If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (11t + 8)(3t + -5) = 0 Reorder the terms: (8 + 11t)(3t + -5) = 0 Reorder the terms: (8 + 11t)(-5 + 3t) = 0 Multiply (8 + 11t) * (-5 + 3t) (8(-5 + 3t) + 11t * (-5 + 3t)) = 0 ((-5 * 8 + 3t * 8) + 11t * (-5 + 3t)) = 0 ((-40 + 24t) + 11t * (-5 + 3t)) = 0 (-40 + 24t + (-5 * 11t + 3t * 11t)) = 0 (-40 + 24t + (-55t + 33t2)) = 0 Combine like terms: 24t + -55t = -31t (-40 + -31t + 33t2) = 0 Solving -40 + -31t + 33t2 = 0 Solving for variable 't'. Factor a trinomial. (-8 + -11t)(5 + -3t) = 0Subproblem 1
Set the factor '(-8 + -11t)' equal to zero and attempt to solve: Simplifying -8 + -11t = 0 Solving -8 + -11t = 0 Move all terms containing t to the left, all other terms to the right. Add '8' to each side of the equation. -8 + 8 + -11t = 0 + 8 Combine like terms: -8 + 8 = 0 0 + -11t = 0 + 8 -11t = 0 + 8 Combine like terms: 0 + 8 = 8 -11t = 8 Divide each side by '-11'. t = -0.7272727273 Simplifying t = -0.7272727273Subproblem 2
Set the factor '(5 + -3t)' equal to zero and attempt to solve: Simplifying 5 + -3t = 0 Solving 5 + -3t = 0 Move all terms containing t to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + -3t = 0 + -5 Combine like terms: 5 + -5 = 0 0 + -3t = 0 + -5 -3t = 0 + -5 Combine like terms: 0 + -5 = -5 -3t = -5 Divide each side by '-3'. t = 1.666666667 Simplifying t = 1.666666667Solution
t = {-0.7272727273, 1.666666667}
| 3/10=x/12 | | .03+x=23.24 | | 4(n-9)=2n-19 | | 2y+19=3y+13 | | 2x+41=115 | | 2x+3y+7=26 | | (18.25%-325.50)=x | | lnx+ln(x-2)=4 | | 2x=28-2y | | (18.25%*325.50)=x | | 17+2(13+y)-10=89 | | lnx+(x-2)=4 | | t^2+19t+10= | | (x-8)(x-5)=0 | | (2b^5+5b^2-4)-(6b^5-3b^2+10)= | | 5v^3+3=-16 | | 3x^2+39x+36=0 | | 6x/18-8x | | 325.50*18.25%=x | | 4x^2-17x+10=-5 | | 325.50/18.25%=x | | -7x+5y+z=15 | | -4z-4z=2z-3-8 | | 6a-2a+8=32 | | 5x-17=8x+37 | | nsquared+nsquared= | | 10x+7=987 | | n(2)+n(2)= | | -3+5-12=15 | | (8-2X)/(5)=0 | | v^2+0v-2v=0 | | 4(a+2)=2a-4 |