(12/x-2)+(26/2x+1)=5

Simple and best practice solution for (12/x-2)+(26/2x+1)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12/x-2)+(26/2x+1)=5 equation:



(12/x-2)+(26/2x+1)=5
We move all terms to the left:
(12/x-2)+(26/2x+1)-(5)=0
Domain of the equation: x-2)!=0
x∈R
Domain of the equation: 2x+1)!=0
x∈R
We get rid of parentheses
12/x+26/2x-2+1-5=0
We calculate fractions
24x/2x^2+26x/2x^2-2+1-5=0
We add all the numbers together, and all the variables
24x/2x^2+26x/2x^2-6=0
We multiply all the terms by the denominator
24x+26x-6*2x^2=0
We add all the numbers together, and all the variables
50x-6*2x^2=0
Wy multiply elements
-12x^2+50x=0
a = -12; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·(-12)·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2500}=50$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*-12}=\frac{-100}{-24} =4+1/6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*-12}=\frac{0}{-24} =0 $

See similar equations:

| 8+2x−4=6+2(x−1) | | -36+12x-8x=36 | | 2(h–5)–-6=10 | | 2x+4^7=3x+4^5 | | -127-3x-6x=44 | | 5=2(w-2)-3 | | 7y-12+5y+12=180 | | -9-11x=6+ | | 0=-5m^2+17m-40 | | 15=2(w–2)–3 | | -16/n=4 | | 8x-12-9x-18=0 | | -1=6×5+6x | | 0=-5m^2-37m+72 | | 5(y+1)–7=78 | | 8x-125+x=109 | | 1-f=14 | | -1=6×5+6×x | | (11b+9)(2b-6)=0 | | 2(c-4)=6 | | 6=4v-6 | | 3(x+4)=2x-(-2x) | | 2(c–4)=6 | | -x+3x-30=14 | | 3x-25=1+3x | | n/6=5/30 | | 82=5(x+1)+6x | | 2(4x-4)+4x+5=-11 | | -9(r–90)+3=3 | | (3x^2-15x+18)=0 | | x-121-11x=139 | | y=30-19/3(-3y/19+90/19) |

Equations solver categories