(120-2x)(100-2x)=(2x)(x+10)

Simple and best practice solution for (120-2x)(100-2x)=(2x)(x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (120-2x)(100-2x)=(2x)(x+10) equation:



(120-2x)(100-2x)=(2x)(x+10)
We move all terms to the left:
(120-2x)(100-2x)-((2x)(x+10))=0
We add all the numbers together, and all the variables
(-2x+120)(-2x+100)-(2x(x+10))=0
We multiply parentheses ..
(+4x^2-200x-240x+12000)-(2x(x+10))=0
We calculate terms in parentheses: -(2x(x+10)), so:
2x(x+10)
We multiply parentheses
2x^2+20x
Back to the equation:
-(2x^2+20x)
We get rid of parentheses
4x^2-2x^2-200x-240x-20x+12000=0
We add all the numbers together, and all the variables
2x^2-460x+12000=0
a = 2; b = -460; c = +12000;
Δ = b2-4ac
Δ = -4602-4·2·12000
Δ = 115600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{115600}=340$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-460)-340}{2*2}=\frac{120}{4} =30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-460)+340}{2*2}=\frac{800}{4} =200 $

See similar equations:

| 12.5t-7.63=13.7t-4.59+6.56 | | n2=6 | | q-4=40 | | x/72=166.5/37 | | x/72=37/166.5 | | 7.9=2x+7.4 | | (5/3)=(1.06)^x | | 2(-6m-3=6(5m-1) | | -7c+9c-5+3= | | 4f-7f=-31 | | 36/4x+9=-2+8x | | 0.3x+16.4=x-7.33 | | 6.5+0.7x=0.9 | | -4(5x+11)=-2)10x+22) | | 2x+243678766=233452 | | 5x-7=10x* | | 10+5x=7x-2 | | 3x+71=x+35 | | |2x+5|=21 | | 6(x+8)=5+5 | | n^2=74 | | 15x-7=3+5x | | 4x+1+107=180 | | 7x-4(x-3)=48 | | x+3/15=8/17 | | 4(10k+19)=19k-20+15k | | y=3•1/2^2 | | 12x+18=27 | | 14x+54=11x+96 | | 6m^2-3m-135=0 | | 5(2x-2)=-10x+10 | | 3+3x=x+6 |

Equations solver categories