(120-3x)/3x=(120-4x)/4x

Simple and best practice solution for (120-3x)/3x=(120-4x)/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (120-3x)/3x=(120-4x)/4x equation:



(120-3x)/3x=(120-4x)/4x
We move all terms to the left:
(120-3x)/3x-((120-4x)/4x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-3x+120)/3x-((-4x+120)/4x)=0
We calculate fractions
(-3x+120)*4x)/12x^2+(-((-4x+120)*3x)/12x^2=0
We calculate fractions
((-3x+120)*4x)*12x^2)/(12x^2+(*12x^2)+(-((-4x+120)*3x)*12x^2)/(12x^2+(*12x^2)=0
We calculate terms in parentheses: +(-((-4x+120)*3x)*12x^2)/(12x^2+(*12x^2), so:
-((-4x+120)*3x)*12x^2)/(12x^2+(*12x^2
We multiply all the terms by the denominator
-((-4x+120)*3x)*12x^2)+((*12x^2)*(12x^2
Back to the equation:
+(-((-4x+120)*3x)*12x^2)+((*12x^2)*(12x^2)
We get rid of parentheses
((-3x+120)*4x)*12x^2)/(12x^2+*12x^2+(-((-4x+120)*3x)*12x^2)+((*12x^2)*12x^2=0
We multiply all the terms by the denominator
((-3x+120)*4x)*12x^2)+(*12x^2)*(12x^2+((-((-4x+120)*3x)*12x^2))*(12x^2+(((*12x^2)*12x^2)*(12x^2=0

See similar equations:

| 2/t=8/12 | | 27=2/7x+5 | | 5e-3(e+4)=30 | | -2/3x+1/3+x=25 | | 5(n+3)=3n+1 | | 4-1/5(1/10x)=1 | | 0−1/4a−4=7/4a−3 | | 1/14x=5 | | 4/3x=150 | | 11/3x=150 | | 2x/3-6=x/3-4 | | 9y-2=8y-4 | | 8=f=30 | | 4x=3+5x | | |2(4b-3)|=10 | | F(x)=x2+5x-2 | | 51/70=x/100 | | 40-1.5x-0.5x=8 | | v-7=12 | | 21=2n-5 | | C(x)=120-40x² | | X-3/2+2x-1=15= | | Y=(x²+1)² | | Y=x³ | | 7(3+4x)=98 | | 2x2-4x-2=0 | | 8x-25=6x-7 | | 15x+3(12-2x)=18 | | 15x+3(13-2x)=18 | | 12z-7-3z=5z+2(z+1)= | | 8+9x=16+2x+5x | | 2+6-7x+20=9+3x12 |

Equations solver categories