(12x*12x)-(3x-4)(4x+1)=19

Simple and best practice solution for (12x*12x)-(3x-4)(4x+1)=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12x*12x)-(3x-4)(4x+1)=19 equation:



(12x*12x)-(3x-4)(4x+1)=19
We move all terms to the left:
(12x*12x)-(3x-4)(4x+1)-(19)=0
We add all the numbers together, and all the variables
(+12x*12x)-(3x-4)(4x+1)-19=0
We get rid of parentheses
12x*12x-(3x-4)(4x+1)-19=0
We multiply parentheses ..
-(+12x^2+3x-16x-4)+12x*12x-19=0
Wy multiply elements
-(+12x^2+3x-16x-4)+144x^2-19=0
We get rid of parentheses
-12x^2+144x^2-3x+16x+4-19=0
We add all the numbers together, and all the variables
132x^2+13x-15=0
a = 132; b = 13; c = -15;
Δ = b2-4ac
Δ = 132-4·132·(-15)
Δ = 8089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{8089}}{2*132}=\frac{-13-\sqrt{8089}}{264} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{8089}}{2*132}=\frac{-13+\sqrt{8089}}{264} $

See similar equations:

| 15x-2=8x+40+14x | | (12x12)-(3x-4)(4x+1)=19 | | 15x-2=18x+40+10x | | Y=6x/(3,24) | | 15x-2=8x+40-16x | | 3x9=6x9 | | 3^(=172x-4) | | 15x-2=8x+40-1-x | | 15x-2=8x+40+20 | | 15x-2=8x+40+10 | | 15x-2=8x+40 | | 15x-2=8x-40 | | -15x-2=8x+40 | | 2(x-9)+2=4(x+4)-34 | | 17x-5=-9x-50 | | 18x-50=9x-50 | | 18x-5+10=9x-50 | | 10x+1=3(3x+2) | | 18x-5-0=9x-50 | | 18x-5=9x-50+10 | | 17x-5=9x-50 | | 3/5t-1/10t=t-9/2S | | 18x-5=8x-50 | | 3(x+9)+2=3x+9 | | 18x-5=9x-70 | | 18x-5=9x-50 | | 16-5x=9x-50 | | 28x-5=9x-50 | | 18x-19=9x-50 | | 18x-16=9x-50 | | 18x-5=-9x-50 | | -18x-5=9x-50 |

Equations solver categories