(12x+28)(3x+62)=180

Simple and best practice solution for (12x+28)(3x+62)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12x+28)(3x+62)=180 equation:



(12x+28)(3x+62)=180
We move all terms to the left:
(12x+28)(3x+62)-(180)=0
We multiply parentheses ..
(+36x^2+744x+84x+1736)-180=0
We get rid of parentheses
36x^2+744x+84x+1736-180=0
We add all the numbers together, and all the variables
36x^2+828x+1556=0
a = 36; b = 828; c = +1556;
Δ = b2-4ac
Δ = 8282-4·36·1556
Δ = 461520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{461520}=\sqrt{144*3205}=\sqrt{144}*\sqrt{3205}=12\sqrt{3205}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(828)-12\sqrt{3205}}{2*36}=\frac{-828-12\sqrt{3205}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(828)+12\sqrt{3205}}{2*36}=\frac{-828+12\sqrt{3205}}{72} $

See similar equations:

| 1/3y+8=1/10y | | 5/6y+1=-1/3y+1/9 | | -6x/2=-9 | | 2^6x+1=8^x | | 0=2.5x+2.5x^2 | | 5x+8-2x=-7 | | 8y-(5y-9)=160 | | 7x-8=9x-10 | | 2x+3/x=7 | | (2x+9)+2=3(x+8 | | -4x-4(x+3)=-10(x+1 | | 1/5k-3=3/5k+3 | | 5(d+5)=6(D-1) | | 4a-(3-a)=2a-9 | | 24,75=2,5x-14,95 | | 3(x+6)+4=-5(x-3) | | g-13=0 | | 0=5x^2+20x-25 | | 5y-(2y-6)=33 | | 2=w-76/8 | | 5x-34=6 | | 7(x+8)+3=-2(x-10)-4 | | P-|4|x|-5|=-15 | | 8x+5-2x=-4x-15+x | | |2w+1|=3w–2 | | 6x-40=-5+2x | | −104=8x | | 3(x-6)=x+30 | | 5(5x-11)=40x | | x/5+3=-4 | | Y/y+2=2/3 | | 10q-7q-3=12 |

Equations solver categories