(12x-3)(5x+12)=(3x+13)

Simple and best practice solution for (12x-3)(5x+12)=(3x+13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12x-3)(5x+12)=(3x+13) equation:



(12x-3)(5x+12)=(3x+13)
We move all terms to the left:
(12x-3)(5x+12)-((3x+13))=0
We multiply parentheses ..
(+60x^2+144x-15x-36)-((3x+13))=0
We calculate terms in parentheses: -((3x+13)), so:
(3x+13)
We get rid of parentheses
3x+13
Back to the equation:
-(3x+13)
We get rid of parentheses
60x^2+144x-15x-3x-36-13=0
We add all the numbers together, and all the variables
60x^2+126x-49=0
a = 60; b = 126; c = -49;
Δ = b2-4ac
Δ = 1262-4·60·(-49)
Δ = 27636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{27636}=\sqrt{196*141}=\sqrt{196}*\sqrt{141}=14\sqrt{141}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-14\sqrt{141}}{2*60}=\frac{-126-14\sqrt{141}}{120} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+14\sqrt{141}}{2*60}=\frac{-126+14\sqrt{141}}{120} $

See similar equations:

| 4n-1=6n+8-8n=15 | | 2~3(3x+9)=-2(2x+6) | | w–6=-9 | | 4p-5p-30p= | | 25g=-8 | | p2=2 | | –2(2c+4)=4(3–c) | | –7+10h=9h | | x+4.5=11.32 | | -312=8(1+8p) | | 5u-2=13 | | 3x+10–25=-9x+9 | | 6=v/5+9 | | -6(1+4n)=-6(8n+5) | | 2x/7+10=42 | | 41-2x=2 | | 5(-4x+4)+5=-2 | | 64=4(p+2)+24 | | 2(3x+6)=6(4x-24) | | 7.06x+1=49.8436+x | | 8x=7=39 | | 6x-15=x-4 | | 2/3x+3=1/2-x | | -(6x+1)=3x+8 | | 17q-25+90-22q=18q+30 | | 9h=–7+10h | | -2x+6=-28 | | 10c+250=12c+90 | | 9x+4-2x+10=-18 | | 21+2.5=4x | | 3x^2+20=123 | | |8x−6|−7=3 |

Equations solver categories