(13)/(2x)-(4)/(15)=(31)/(6x)

Simple and best practice solution for (13)/(2x)-(4)/(15)=(31)/(6x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (13)/(2x)-(4)/(15)=(31)/(6x) equation:



(13)/(2x)-(4)/(15)=(31)/(6x)
We move all terms to the left:
(13)/(2x)-(4)/(15)-((31)/(6x))=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
13/2x-(+31/6x)-4/15=0
We get rid of parentheses
13/2x-31/6x-4/15=0
We calculate fractions
(-288x^2)/180x^2+1170x/180x^2+(-930x)/180x^2=0
We multiply all the terms by the denominator
(-288x^2)+1170x+(-930x)=0
We get rid of parentheses
-288x^2+1170x-930x=0
We add all the numbers together, and all the variables
-288x^2+240x=0
a = -288; b = 240; c = 0;
Δ = b2-4ac
Δ = 2402-4·(-288)·0
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{57600}=240$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(240)-240}{2*-288}=\frac{-480}{-576} =5/6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(240)+240}{2*-288}=\frac{0}{-576} =0 $

See similar equations:

| 67-3(5-x)=(4-3x)*(-8) | | 180+0.25m=382.50 | | -2(4x-6)+6=-8+18 | | 3(w+3)-5=3 | | 8x+3=-41 | | X^2+9;x=-3 | | 35x+35-20=540 | | -24=-15+y | | 5y+6=y | | 3-(4-x)=5+3(x-4) | | X^3+x^2+13x+7=0 | | 131-x=283 | | 231=154-w | | -2.6b+4=0.96-17 | | 3.5+x=7.4 | | d+5/20=3 | | 10x+15=11x+7 | | 3v=24-24-5v | | y-4/3=2/5 | | 7w-6=3(w+6)6 | | 12-10a=-158 | | 7y-3+8+0=0 | | t+7.2=1.62 | | 260=17-y | | -14x+16=-12x-1 | | 6x-3=2+4x-11 | | 3k+3=5k-1 | | k−7=16 | | −63=14+7n | | 5x-17=3x+90-11 | | -11(v+3)=198 | | |5x|+8=43 |

Equations solver categories