(13)2+(17)2=(c)2

Simple and best practice solution for (13)2+(17)2=(c)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (13)2+(17)2=(c)2 equation:



(13)2+(17)2=(c)2
We move all terms to the left:
(13)2+(17)2-((c)2)=0
determiningTheFunctionDomain -c2+132+172=0
We add all the numbers together, and all the variables
-1c^2+304=0
a = -1; b = 0; c = +304;
Δ = b2-4ac
Δ = 02-4·(-1)·304
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{19}}{2*-1}=\frac{0-8\sqrt{19}}{-2} =-\frac{8\sqrt{19}}{-2} =-\frac{4\sqrt{19}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{19}}{2*-1}=\frac{0+8\sqrt{19}}{-2} =\frac{8\sqrt{19}}{-2} =\frac{4\sqrt{19}}{-1} $

See similar equations:

| -2(-8y+5)-2y=4(y-1)-4 | | p=17-3 | | 8.2=x+1.6 | | 4(u+6)=-2(6u-6)+6u | | x3=48x | | 3(y-1)=7y+9-2(-2y-1) | | -3(5w-3)+9w=6+4(2w-1) | | 3(y-3)-9=-3(-7y+5)-6y | | -4(4y-3)+3y=3(y+2) | | 3(75)+3b=6 | | -2/3=y-3 | | 0.10(y-8)+0.08y=0.12y-0.5 | | 3x-4(x+1)=-6 | | v/6+2.2=-7.4 | | 10+y/7=-7.92 | | 3x-17=109 | | 3.2=-2v+6.4 | | v/3-1.2=-8.7 | | -5y-9=2y+19 | | 15=7+x/20.48 | | 5(x-3)-3x=5 | | 15=7+x÷20.48 | | -20.3+6u=18.1 | | v/4+5.1=-1.3 | | 14+x/7-6=-1 | | 5.1=-7y+27.5 | | 7y-2+2y+7=90 | | 5x+5x+6=6x+20-2 | | 5(2p+3)=3(4p-7) | | -6(y-1)=-8y-6 | | 4x-14=7(x+1) | | 3(x+3)=8x-11 |

Equations solver categories