If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(13+2x)/(4x+1)=3/4x
We move all terms to the left:
(13+2x)/(4x+1)-(3/4x)=0
Domain of the equation: (4x+1)!=0
We move all terms containing x to the left, all other terms to the right
4x!=-1
x!=-1/4
x!=-1/4
x∈R
Domain of the equation: 4x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(2x+13)/(4x+1)-(+3/4x)=0
We get rid of parentheses
(2x+13)/(4x+1)-3/4x=0
We calculate fractions
(8x^2+52x)/(16x^2+4x)+(-12x-3)/(16x^2+4x)=0
We multiply all the terms by the denominator
(8x^2+52x)+(-12x-3)=0
We get rid of parentheses
8x^2+52x-12x-3=0
We add all the numbers together, and all the variables
8x^2+40x-3=0
a = 8; b = 40; c = -3;
Δ = b2-4ac
Δ = 402-4·8·(-3)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{106}}{2*8}=\frac{-40-4\sqrt{106}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{106}}{2*8}=\frac{-40+4\sqrt{106}}{16} $
| (17.5)x=5 | | 2k(14)+7(2k)-2=28k+12 | | 100=4y+y | | -4k-2=3 | | 4(v+8)=-5v+14 | | s7-34=71 | | 6(b)=54 | | 2017+x=7500 | | 0=6x^2-12x-12 | | x+6/14=12/14 | | x+2/8=6/8 | | x*1.10=400 | | (-2)=-2/3(24)+b | | 3.4q-3.4-4.9=-2.5q-3.4 | | 31x+6.50=97.50 | | 40+50h=390 | | -2=-2/3*24+b | | 3/8-1/7=x | | -3(y-3)=6y+27 | | 6w+24=4(w+1) | | 225y/2=90 | | x+4/15=11/15 | | 4x=2(3x-8) | | -12x-17=-69 | | 2^(x^2+7x)=8^(-4) | | 2(x^2+7x)=8^(-4) | | x-(2)=2 | | 14=a2 | | (5x-5)+12=32 | | -11+10(x+10)=4-5(2x+11 | | 32456+3464=x+3422-34532 | | 23454535-455454334(x-123223)=x+23324 |