If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (13 + -6x)(x) = 15 Reorder the terms for easier multiplication: x(13 + -6x) = 15 (13 * x + -6x * x) = 15 (13x + -6x2) = 15 Solving 13x + -6x2 = 15 Solving for variable 'x'. Reorder the terms: -15 + 13x + -6x2 = 15 + -15 Combine like terms: 15 + -15 = 0 -15 + 13x + -6x2 = 0 Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. 2.5 + -2.166666667x + x2 = 0 Move the constant term to the right: Add '-2.5' to each side of the equation. 2.5 + -2.166666667x + -2.5 + x2 = 0 + -2.5 Reorder the terms: 2.5 + -2.5 + -2.166666667x + x2 = 0 + -2.5 Combine like terms: 2.5 + -2.5 = 0.0 0.0 + -2.166666667x + x2 = 0 + -2.5 -2.166666667x + x2 = 0 + -2.5 Combine like terms: 0 + -2.5 = -2.5 -2.166666667x + x2 = -2.5 The x term is -2.166666667x. Take half its coefficient (-1.083333334). Square it (1.173611113) and add it to both sides. Add '1.173611113' to each side of the equation. -2.166666667x + 1.173611113 + x2 = -2.5 + 1.173611113 Reorder the terms: 1.173611113 + -2.166666667x + x2 = -2.5 + 1.173611113 Combine like terms: -2.5 + 1.173611113 = -1.326388887 1.173611113 + -2.166666667x + x2 = -1.326388887 Factor a perfect square on the left side: (x + -1.083333334)(x + -1.083333334) = -1.326388887 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 2(x+4)+4=7x-5(x-5) | | 14.50p-p=53 | | x+3x=-600 | | -2(x-3x)+8=6(3x-x)+1+15x | | a+2=56 | | Bx+5x=7 | | 26x+548=270-113x | | 2x+11=x+13 | | 10y+10=4-(4y) | | 4b(3)= | | -5(3m-10)+16(m-5)=13-9 | | (13-6x)=15 | | -2(x+3)+3=6(x+3)+1 | | 4(x+4)=9x+5-5x+11 | | 10(4+2b)= | | 14.50+p=53 | | 4(4x-3)+5=-1 | | 3t+6+5t-7t=4+5 | | X^3-4x^2+20-5x= | | .075x+1.25y=15 | | 4(x+1)=8(x-1)-8 | | 14.50+p=535 | | 3y(4x-1y)=42 | | -4+11x+7=16+15x-21 | | -102-6x=10x+106 | | 3(8+5n*2)= | | 8x+16=6x+50 | | 2x+11+x+13=60 | | 8x-3=6x+43 | | 2L+2(L-4)=72 | | 8V^3*5VU^2= | | 15n+2n-8n-3n+6n= |