(14/5)+(1/6)t=3

Simple and best practice solution for (14/5)+(1/6)t=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (14/5)+(1/6)t=3 equation:



(14/5)+(1/6)t=3
We move all terms to the left:
(14/5)+(1/6)t-(3)=0
Domain of the equation: 6)t!=0
t!=0/1
t!=0
t∈R
determiningTheFunctionDomain (1/6)t-3+(14/5)=0
We add all the numbers together, and all the variables
(+1/6)t-3+(+14/5)=0
We multiply parentheses
t^2-3+(+14/5)=0
We get rid of parentheses
t^2-3+14/5=0
We multiply all the terms by the denominator
t^2*5+14-3*5=0
We add all the numbers together, and all the variables
t^2*5-1=0
Wy multiply elements
5t^2-1=0
a = 5; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·5·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*5}=\frac{0-2\sqrt{5}}{10} =-\frac{2\sqrt{5}}{10} =-\frac{\sqrt{5}}{5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*5}=\frac{0+2\sqrt{5}}{10} =\frac{2\sqrt{5}}{10} =\frac{\sqrt{5}}{5} $

See similar equations:

| 3x/4-2=-8 | | x–10=44 | | 5x+2=1/2(10x+8)-2 | | t=10=7t-14 | | 12/w=-4 | | x-1/3-x+4/6=4x-1/4 | | 1x+-2=-4x+-42 | | x/10+1=4 | | s+2/5=s-2/4 | | 11v-4v=63 | | 2b-10b-15+5=8b-4b—4b-6 | | 5c-15=26=6 | | 10/h=2/3 | | (3/5)x-15=(6/5)x+12 | | 0.11(y-2)+0.14y=0.05y-0.20 | | 3/4x-5=4/5* | | 1=(20/3x)-10 | | 6x+-10=140 | | 10-f=15 | | 6x+9=4x-5;2 | | F(x)=21(12x^2+2)+10 | | 384c^2-294=0 | | 5=(2/7)(10x+35) | | s+212s+20=62 | | m-1.9=1.1 | | 3x-9=11;x=8 | | (2x-1)/3=4x | | 3y^2+7y-8=0 | | 4-(3x-5)=6-(2x+7)+ | | x+5=4x–4 | | X3^-3x^2+9x-27=0 | | 2x-4/5x-1=6/7 |

Equations solver categories