(14/9)(a)=a+1400

Simple and best practice solution for (14/9)(a)=a+1400 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (14/9)(a)=a+1400 equation:



(14/9)(a)=a+1400
We move all terms to the left:
(14/9)(a)-(a+1400)=0
Domain of the equation: 9)a!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
(+14/9)a-(a+1400)=0
We multiply parentheses
14a^2-(a+1400)=0
We get rid of parentheses
14a^2-a-1400=0
We add all the numbers together, and all the variables
14a^2-1a-1400=0
a = 14; b = -1; c = -1400;
Δ = b2-4ac
Δ = -12-4·14·(-1400)
Δ = 78401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{78401}}{2*14}=\frac{1-\sqrt{78401}}{28} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{78401}}{2*14}=\frac{1+\sqrt{78401}}{28} $

See similar equations:

| Y=0.08x^2-0.8x | | 4x^-21x+26=0 | | 4xx3=-5 | | 2x+1.5x=1300 | | 4(x+16)=5(x+12) | | 16=3x=43 | | 2x-5+8=3x-1 | | (x-14)*6=(x-10)*5 | | (13x-34)=(7x+38) | | (13x-34)+(7x+38)=180 | | A(t)=2t–0,5t2+2 | | x5+8=x3-6 | | 121+3n-2n=84 | | -3x-32=-2(5-3x)+2x | | 5x-3=8x=16 | | 2^x=16^-1 | | 4834=x+4964/2 | | 10x-(-5)=-43-2x | | 2/5(n)+3=18-1/5(n) | | 56+64+110+x=360 | | 56+64+110+x=36- | | (5x+20)+(3x+30)=90 | | x+110+92+88=360 | | x+110+92+88=36- | | 1+k=11k-39 | | X-2+4x-17=180 | | 2x+43+2x-3=18 | | X2-4x-93=0 | | 2*(3x-2)-4x=3*(x-4) | | X+35+2x-5=180 | | 70+45+x=18- | | (x-8)*6=(x-5)*5 |

Equations solver categories