If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(14/9)k+11/9-2k+2/9+(2/9)k-5=0
Domain of the equation: 9)k!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
(+14/9)k-2k+(+2/9)k-5+11/9+2/9=0
We add all the numbers together, and all the variables
-2k+(+14/9)k+(+2/9)k-5+11/9+2/9=0
We multiply parentheses
14k^2+2k^2-2k-5+11/9+2/9=0
We multiply all the terms by the denominator
14k^2*9+2k^2*9-2k*9+11+2-5*9=0
We add all the numbers together, and all the variables
14k^2*9+2k^2*9-2k*9-32=0
Wy multiply elements
126k^2+18k^2-18k-32=0
We add all the numbers together, and all the variables
144k^2-18k-32=0
a = 144; b = -18; c = -32;
Δ = b2-4ac
Δ = -182-4·144·(-32)
Δ = 18756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18756}=\sqrt{36*521}=\sqrt{36}*\sqrt{521}=6\sqrt{521}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{521}}{2*144}=\frac{18-6\sqrt{521}}{288} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{521}}{2*144}=\frac{18+6\sqrt{521}}{288} $
| -1/8+y=0 | | 36-(2x+7)(2x+7)=0 | | 5x-14=-7x+10 | | 6(c-16)=30 | | 4x—5+2x=7 | | 2(x-4)=6x+22 | | 6(54.90)= | | 16=-4.9t^2+18t+1 | | Y=80+35x | | 4(4-4n)=112 | | 6x-10=76 | | 6y-4=(y+6) | | 12g=96 | | 4(x+5)=34 | | 7=2*4y+3 | | -w+236=179 | | 6p-12=72=14p | | 7.3=8.8-0.5x | | 5(x-20)=180 | | -x-135=4x+35 | | -4y+3+2y=-9 | | |x+2|+5=7 | | -y+192=282 | | 3(x+2)^2=36 | | 5/6h+-7/12=-3/4h+-13/6 | | 5/8x-12=1/2x+2 | | 92=183-v | | Y=2x-220 | | 4(t+2.6)-1.17=15.59 | | 3x+5=5x-27 | | (x+2)2=2x+4 | | 84+x=178 |