(140/2)+12-(4x2)=2

Simple and best practice solution for (140/2)+12-(4x2)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (140/2)+12-(4x2)=2 equation:



(140/2)+12-(4x^2)=2
We move all terms to the left:
(140/2)+12-(4x^2)-(2)=0
determiningTheFunctionDomain -4x^2+12-2+(140/2)=0
We add all the numbers together, and all the variables
-4x^2+12-2+70=0
We add all the numbers together, and all the variables
-4x^2+80=0
a = -4; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-4)·80
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*-4}=\frac{0-16\sqrt{5}}{-8} =-\frac{16\sqrt{5}}{-8} =-\frac{2\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*-4}=\frac{0+16\sqrt{5}}{-8} =\frac{16\sqrt{5}}{-8} =\frac{2\sqrt{5}}{-1} $

See similar equations:

| x+2(3x+1)=3(x-21) | | 23a=115 | | 3(x+3)-8x=-21 | | -x²-4x+77=0 | | ŷ=-260+6.6x | | ŷ=-260+6.6x. | | 2/3-x=1-6 | | 6=3.x-8 | | 2x+4+6x-12=x+15-32+8x-10x | | .25m+1.50= | | F(x)=-2x^-6x+4 | | 8p+6+4p=4 | | 2(4x-3)=5x+18 | | 2x−2=12−5x | | 6x+7(6x-1)=377 | | 2(4x-3=5x+18 | | 7d-12d+3d=15 | | 91=7(n-6) | | 7+t=35 | | │x-7│=5 | | ?x3+8=23 | | 25-0.6*x=52 | | 6y-5=4y+3 | | 40x+22.6995x=1520.5 | | 13=23-x | | 40x+15.133(1.5x)=1520.5 | | x-7=|5-3x| | |  2x-6=-8 | | 1/12x+1/3+2^(1/6x+2/9)=1/3(x+2) | | 50+2.5x=75 | | 1+4x=180 | | 3x+4=30x+85 |

Equations solver categories