(15+x)(24+x)=540

Simple and best practice solution for (15+x)(24+x)=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (15+x)(24+x)=540 equation:



(15+x)(24+x)=540
We move all terms to the left:
(15+x)(24+x)-(540)=0
We add all the numbers together, and all the variables
(x+15)(x+24)-540=0
We multiply parentheses ..
(+x^2+24x+15x+360)-540=0
We get rid of parentheses
x^2+24x+15x+360-540=0
We add all the numbers together, and all the variables
x^2+39x-180=0
a = 1; b = 39; c = -180;
Δ = b2-4ac
Δ = 392-4·1·(-180)
Δ = 2241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2241}=\sqrt{9*249}=\sqrt{9}*\sqrt{249}=3\sqrt{249}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-3\sqrt{249}}{2*1}=\frac{-39-3\sqrt{249}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+3\sqrt{249}}{2*1}=\frac{-39+3\sqrt{249}}{2} $

See similar equations:

| -2(1-9k)=250 | | -2/3x-34x=5/6 | | -5=x+10/4 | | (2x-20)(x-20)(10)=8320 | | -6x+66=-66 | | 6z(1/2+2)+3=z | | 38x-2=16 | | (2x+3)=(3x-12) | | -3r=-10-2r | | -7/3x+6=-2/5x-7/5 | | 8(2x+1)=10X | | 25=a-60-9÷a | | -36(4x+6)=-111 | | 1−–4h=–11 | | 2x+4x-480=0 | | -23x-34x=56 | | -312=4(11n-1) | | –3k=–12 | | (9/8)=(x/8) | | 12+2r=4r+4 | | -10+7f+5=8f+10 | | 3a=1/27 | | 4=x/7+6 | | j2+ 16=19 | | 12x+5=9x-13 | | X=60-10x | | y=5(17+(-1.5y)) | | 32x+2=18 | | 3x-19=4x+1 | | –14h+10=10−17h | | -36x+6x=7x+2x | | 2(r+5)—4(r-1)=32 |

Equations solver categories