(15-2x)(10-2x)=120

Simple and best practice solution for (15-2x)(10-2x)=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (15-2x)(10-2x)=120 equation:



(15-2x)(10-2x)=120
We move all terms to the left:
(15-2x)(10-2x)-(120)=0
We add all the numbers together, and all the variables
(-2x+15)(-2x+10)-120=0
We multiply parentheses ..
(+4x^2-20x-30x+150)-120=0
We get rid of parentheses
4x^2-20x-30x+150-120=0
We add all the numbers together, and all the variables
4x^2-50x+30=0
a = 4; b = -50; c = +30;
Δ = b2-4ac
Δ = -502-4·4·30
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{505}}{2*4}=\frac{50-2\sqrt{505}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{505}}{2*4}=\frac{50+2\sqrt{505}}{8} $

See similar equations:

| 8=16d+51 | | –8=4n–6n-18 | | 5x+-18=63 | | x−3=12x-3=12 | | 4^x+3=112+8*4^x | | 1(5-4x)=4(2-10x) | | 2^2x+6-2^3+2x=112 | | 3x²-4x+2=0 | | X²-10x=-25 | | 7x²+x+2=0 | | 7x8=6x-5 | | x/3.5=-10.2 | | 7(3x+5)=4(2x-2) | | x-50.5/16=1.6449 | | 125x2–5x=0 | | 4m×3m=2 | | X^3-4x^2-7=x^2+6x-7 | | x*2x*3x=750 | | 1,035^x=2 | | 1x/8*1x/5=3/4 | | 10(4-3x)=3(1-9x) | | 6p+7=325 | | x-510/105=1.0364 | | x+501=1025 | | x-9.6/0.3=1.0364 | | 5z+4=15 | | 17x-4=5x+8 | | x-140/16=0.8416 | | 23x-19x+5x=1827 | | 8k/15=0 | | 6x+8x-7x=714 | | 3^(x)=(1)/(243) |

Equations solver categories