(15/4)*m=15/2

Simple and best practice solution for (15/4)*m=15/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (15/4)*m=15/2 equation:



(15/4)*m=15/2
We move all terms to the left:
(15/4)*m-(15/2)=0
Domain of the equation: 4)*m!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
(+15/4)*m-(+15/2)=0
We multiply parentheses
15m^2-(+15/2)=0
We get rid of parentheses
15m^2-15/2=0
We multiply all the terms by the denominator
15m^2*2-15=0
Wy multiply elements
30m^2-15=0
a = 30; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·30·(-15)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*30}=\frac{0-30\sqrt{2}}{60} =-\frac{30\sqrt{2}}{60} =-\frac{\sqrt{2}}{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*30}=\frac{0+30\sqrt{2}}{60} =\frac{30\sqrt{2}}{60} =\frac{\sqrt{2}}{2} $

See similar equations:

| 2(q+3)=20 | | −3a−12a+5+6a−10=11−7a−6+2a−4a | | 12+4a−3a−12+5a=16−2a−7−9+2a | | 8a−5+2a−6+18=9+8−3a+13a−10 | | (-33/4)*m=71/277 | | 4=32c | | 1+3.1a-6.1a=5.5 | | 2(-3x/2+6)=(5x+2/3) | | 8p-5=13 | | 6y-5(y-2)+1=11 | | 1/3a+18=2a-12 | | -12x÷11=-3 | | (26+2x)(36+2x)=1200 | | 2(5a+4=4a+8 | | 12x÷11=-3 | | 6r-3=2r+11 | | 2(3x/2+6)=(5x+2/3) | | 7z^2-343=0 | | 2b^2=-7b | | 2(´3x/2+6)=(5x+2/3) | | D/3.2=m.4 | | 2(-x)+4x=2(-x)+-20 | | x=8x+42 | | 122x+(4x^2)=264 | | -5c/7+12=37 | | 5n-3=2(n-8)=3n | | 3x+14-5x=16-17x+15x-2 | | n÷8-3=-11 | | 122x+4x^2=264 | | N-39=2p | | 1/3y–18=2 | | (u-9)(u^2-18u+18)=0 |

Equations solver categories