(15/n-1)(n-1)=59

Simple and best practice solution for (15/n-1)(n-1)=59 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (15/n-1)(n-1)=59 equation:



(15/n-1)(n-1)=59
We move all terms to the left:
(15/n-1)(n-1)-(59)=0
Domain of the equation: n-1)(n-1)!=0
n∈R
We multiply parentheses ..
(+15n^2-15n-1n+1)-59=0
We get rid of parentheses
15n^2-15n-1n+1-59=0
We add all the numbers together, and all the variables
15n^2-16n-58=0
a = 15; b = -16; c = -58;
Δ = b2-4ac
Δ = -162-4·15·(-58)
Δ = 3736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3736}=\sqrt{4*934}=\sqrt{4}*\sqrt{934}=2\sqrt{934}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{934}}{2*15}=\frac{16-2\sqrt{934}}{30} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{934}}{2*15}=\frac{16+2\sqrt{934}}{30} $

See similar equations:

| 4(x+4=-2)x+1 | | 5x+47/6=42 | | X^2+2x-900=0 | | 300=50t | | 300=50t+300 | | -6(x+6=3)x+9 | | 3(-2x+8/5-3)+17=20 | | 1.4=8d0.6 | | 3x=6/10 | | 2x+81=931 | | 2x-3=548 | | 65=9-7h | | 3x=548 | | 37=x+39 | | 73=3(2y+5)-2(y-5) | | 11-2x=91 | | 4(x-2)+11-4=3x+3 | | 29=5+4w | | 38=3.15d | | c/2+4=-6 | | 4/45x=-5 | | 4x=426 | | 1/2-7/3y=-3/4 | | x2+7x−34=0 | | 2x=592 | | 58x=592 | | 0.5(y+4)+0.25y=8 | | -10(s-3)=-43 | | 0.5x=500 | | 7x=+24 | | 5u+11=81 | | x=(-2)(3x)+70 |

Equations solver categories