(15x+42)10x-7=5x+3

Simple and best practice solution for (15x+42)10x-7=5x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (15x+42)10x-7=5x+3 equation:


Simplifying
(15x + 42) * 10x + -7 = 5x + 3

Reorder the terms:
(42 + 15x) * 10x + -7 = 5x + 3

Reorder the terms for easier multiplication:
10x(42 + 15x) + -7 = 5x + 3
(42 * 10x + 15x * 10x) + -7 = 5x + 3
(420x + 150x2) + -7 = 5x + 3

Reorder the terms:
-7 + 420x + 150x2 = 5x + 3

Reorder the terms:
-7 + 420x + 150x2 = 3 + 5x

Solving
-7 + 420x + 150x2 = 3 + 5x

Solving for variable 'x'.

Reorder the terms:
-7 + -3 + 420x + -5x + 150x2 = 3 + 5x + -3 + -5x

Combine like terms: -7 + -3 = -10
-10 + 420x + -5x + 150x2 = 3 + 5x + -3 + -5x

Combine like terms: 420x + -5x = 415x
-10 + 415x + 150x2 = 3 + 5x + -3 + -5x

Reorder the terms:
-10 + 415x + 150x2 = 3 + -3 + 5x + -5x

Combine like terms: 3 + -3 = 0
-10 + 415x + 150x2 = 0 + 5x + -5x
-10 + 415x + 150x2 = 5x + -5x

Combine like terms: 5x + -5x = 0
-10 + 415x + 150x2 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(-2 + 83x + 30x2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(-2 + 83x + 30x2)' equal to zero and attempt to solve: Simplifying -2 + 83x + 30x2 = 0 Solving -2 + 83x + 30x2 = 0 Begin completing the square. Divide all terms by 30 the coefficient of the squared term: Divide each side by '30'. -0.06666666667 + 2.766666667x + x2 = 0.0 Move the constant term to the right: Add '0.06666666667' to each side of the equation. -0.06666666667 + 2.766666667x + 0.06666666667 + x2 = 0.0 + 0.06666666667 Reorder the terms: -0.06666666667 + 0.06666666667 + 2.766666667x + x2 = 0.0 + 0.06666666667 Combine like terms: -0.06666666667 + 0.06666666667 = 0.00000000000 0.00000000000 + 2.766666667x + x2 = 0.0 + 0.06666666667 2.766666667x + x2 = 0.0 + 0.06666666667 Combine like terms: 0.0 + 0.06666666667 = 0.06666666667 2.766666667x + x2 = 0.06666666667 The x term is 2.766666667x. Take half its coefficient (1.383333334). Square it (1.913611113) and add it to both sides. Add '1.913611113' to each side of the equation. 2.766666667x + 1.913611113 + x2 = 0.06666666667 + 1.913611113 Reorder the terms: 1.913611113 + 2.766666667x + x2 = 0.06666666667 + 1.913611113 Combine like terms: 0.06666666667 + 1.913611113 = 1.98027777967 1.913611113 + 2.766666667x + x2 = 1.98027777967 Factor a perfect square on the left side: (x + 1.383333334)(x + 1.383333334) = 1.98027777967 Calculate the square root of the right side: 1.407223429 Break this problem into two subproblems by setting (x + 1.383333334) equal to 1.407223429 and -1.407223429.

Subproblem 1

x + 1.383333334 = 1.407223429 Simplifying x + 1.383333334 = 1.407223429 Reorder the terms: 1.383333334 + x = 1.407223429 Solving 1.383333334 + x = 1.407223429 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.383333334' to each side of the equation. 1.383333334 + -1.383333334 + x = 1.407223429 + -1.383333334 Combine like terms: 1.383333334 + -1.383333334 = 0.000000000 0.000000000 + x = 1.407223429 + -1.383333334 x = 1.407223429 + -1.383333334 Combine like terms: 1.407223429 + -1.383333334 = 0.023890095 x = 0.023890095 Simplifying x = 0.023890095

Subproblem 2

x + 1.383333334 = -1.407223429 Simplifying x + 1.383333334 = -1.407223429 Reorder the terms: 1.383333334 + x = -1.407223429 Solving 1.383333334 + x = -1.407223429 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.383333334' to each side of the equation. 1.383333334 + -1.383333334 + x = -1.407223429 + -1.383333334 Combine like terms: 1.383333334 + -1.383333334 = 0.000000000 0.000000000 + x = -1.407223429 + -1.383333334 x = -1.407223429 + -1.383333334 Combine like terms: -1.407223429 + -1.383333334 = -2.790556763 x = -2.790556763 Simplifying x = -2.790556763

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.023890095, -2.790556763}

Solution

x = {0.023890095, -2.790556763}

See similar equations:

| m^2=-10+7m | | 5x/6-2=8 | | e+1/2=9 | | -9x+x= | | 6x-8=x+2 | | 2(t+5)-19= | | A/12=-3 | | 4/5x-8=4x | | 60=12b | | 3(x-2)=20 | | 2r^2+3=5r | | -7x-1+7(x+1)=-(6x-5) | | 17=2+y | | 2x^3-11x^2+10x+8=0 | | 0=x^2-10x+21 | | 7m+3n-7(7m-6n)= | | 7m-3=2(5m-2)+16 | | x*x+5x=12 | | 2+4y=-14 | | 6y+20=7x | | 3(-1)+y=5 | | 8x-3x+2x-9x= | | 3(1)+y=5 | | -9+3x+5x=-33 | | x+1+3x=-19 | | 1/4(8x-40) | | 3(x-4)=37-4x | | r^2+14=9r | | 24(34+r)=1248 | | 2x-5=75-8x | | -30=-7x-x+2 | | 9x+5=2x+54 |

Equations solver categories