(16+2x)(8+2x)-128=200

Simple and best practice solution for (16+2x)(8+2x)-128=200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16+2x)(8+2x)-128=200 equation:



(16+2x)(8+2x)-128=200
We move all terms to the left:
(16+2x)(8+2x)-128-(200)=0
We add all the numbers together, and all the variables
(2x+16)(2x+8)-128-200=0
We add all the numbers together, and all the variables
(2x+16)(2x+8)-328=0
We multiply parentheses ..
(+4x^2+16x+32x+128)-328=0
We get rid of parentheses
4x^2+16x+32x+128-328=0
We add all the numbers together, and all the variables
4x^2+48x-200=0
a = 4; b = 48; c = -200;
Δ = b2-4ac
Δ = 482-4·4·(-200)
Δ = 5504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5504}=\sqrt{64*86}=\sqrt{64}*\sqrt{86}=8\sqrt{86}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{86}}{2*4}=\frac{-48-8\sqrt{86}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{86}}{2*4}=\frac{-48+8\sqrt{86}}{8} $

See similar equations:

| 5x-10-3x+3+2x=20-x-4-3-3x | | -5=-3x-3 | | 5g=21/2 | | (1+x/100)^14=1,6 | | (-3x^2)+2x+48=0 | | 79/100=x/30 | | w+35/8=15/6 | | 8x+3x-2+130=180 | | 9x-3x-x=-5 | | 7x-28=9x+2x+24 | | 50=3(x+25) | | 2^x=1,19 | | 23=15+q | | 5(x+2)=2(x+6) | | 6x-17+90=180 | | 28=7p–7 | | M+2n=12 | | (-p^2)+10p+9=0 | | y=1E-05(12.5)-6E-05 | | 1/6x-2/3=1 | | 5000(1+p/100)^14=8000 | | 7/10=x/40 | | -p2+10p+9=0 | | 1/3m=90 | | -9x-7=26x-7(5x-7/0 | | -36=9w–5w | | 4x+6/11-3x=3/22 | | K(x)=-4(x+3)2+9 | | x-7/8x=1/5 | | -35=4z+3z | | 4x+6/11-3x=3/23 | | 3y+5+5y+15=18 |

Equations solver categories