(16=2x)(8+2x)

Simple and best practice solution for (16=2x)(8+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16=2x)(8+2x) equation:



(16=2x)(8+2x)
We move all terms to the left:
(16-(2x)(8+2x))=0
We add all the numbers together, and all the variables
(16-2x(2x+8))=0
We calculate terms in parentheses: +(16-2x(2x+8)), so:
16-2x(2x+8)
determiningTheFunctionDomain -2x(2x+8)+16
We multiply parentheses
-4x^2-16x+16
Back to the equation:
+(-4x^2-16x+16)
We get rid of parentheses
-4x^2-16x+16=0
a = -4; b = -16; c = +16;
Δ = b2-4ac
Δ = -162-4·(-4)·16
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{2}}{2*-4}=\frac{16-16\sqrt{2}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{2}}{2*-4}=\frac{16+16\sqrt{2}}{-8} $

See similar equations:

| 6x-4=4+4x | | 28x+50+134=180 | | 3−2(−5x+3)=3x+4 | | 3^x+2+3^x=10 | | 8v+2-2(-2v-3)=6(v-1) | | 3(4x+6)=-9+3 | | 3x2+18x−165=0 | | 7x+6(2–x)+19=30+3(6+x) | | |4x-12|/2=8 | | 10(x+2)+3(x+2)=100 | | -7x+44=5x-(10x-6)-6 | | 6(x+2)=3(2x+1+9 | | 2(2w-10)=9w+30 | | -2(w+8)=2w-4+2(2w+3) | | B=9-3x | | 4/9*x=2 | | 4/9*x=6 | | 2/3-14/15y=1/3 | | 10x^2-19x+16=0 | | 2(55-2x)+(1x)=89 | | 240/(x+2)*2+4x=240 | | 12/5/x=6 | | -22=3s—-8 | | 94=171-v | | -3(2z+5)=6(-z+4) | | 236=-w+65 | | 4^5x-1=3^2x+6 | | 3.5x-16.35=8.5 | | 3(v+8)=-3(3v-3)+6v | | -2(-8v+4)-3v=7(v-1)-3 | | .25(w-4.3)=4 | | -2(4t-2)+6t=8t-3 |

Equations solver categories