If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(180)/540=n2
We move all terms to the left:
(180)/540-(n2)=0
We add all the numbers together, and all the variables
-1n^2+180/540=0
We multiply all the terms by the denominator
-1n^2*540+180=0
Wy multiply elements
-540n^2+180=0
a = -540; b = 0; c = +180;
Δ = b2-4ac
Δ = 02-4·(-540)·180
Δ = 388800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388800}=\sqrt{129600*3}=\sqrt{129600}*\sqrt{3}=360\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-360\sqrt{3}}{2*-540}=\frac{0-360\sqrt{3}}{-1080} =-\frac{360\sqrt{3}}{-1080} =-\frac{\sqrt{3}}{-3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+360\sqrt{3}}{2*-540}=\frac{0+360\sqrt{3}}{-1080} =\frac{360\sqrt{3}}{-1080} =\frac{\sqrt{3}}{-3} $
| -5/11y-17=-2 | | -9.6y-8.4=0 | | 3u/8=5/2 | | 3.6x-8.4=0 | | (7x–14)+(5x+36)=180 | | (1234+1234)x3=12x5= | | =1.43x8/100 | | c+2.5c4.3;c=1.8 | | 5.9y-6.8=0 | | ⅔(6a+9)=21.6 | | 1.3x-6.8=0 | | 140x+50x=120 | | b/26;b=10 | | 140x+50x=180 | | -11.1=9/5(c+32) | | 12+n*10-5=87 | | x^2+4x+32=800 | | 1.3x+5.9x-6.5=0 | | (2-x)4=-20 | | -6x-28=-44 | | 10x+x-30=4x+4x-6 | | Y=14000(1.09)x | | (5)/(6)=(10)/(2x-3) | | 2(x+2)=x–9 | | 86x−12 =-9 | | 4x+9=2x+24 | | 3x+5=-3x-6 | | 5x+3x+1=0 | | 15x1-18x2+7x3=3 | | 6.565=65(x-1) | | z-3.11=3.19 | | 6.4t=t |