(180-x*x)+(150-2x)=180

Simple and best practice solution for (180-x*x)+(150-2x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (180-x*x)+(150-2x)=180 equation:



(180-x*x)+(150-2x)=180
We move all terms to the left:
(180-x*x)+(150-2x)-(180)=0
We add all the numbers together, and all the variables
(-x*x+180)+(-2x+150)-180=0
We get rid of parentheses
-x*x-2x+180+150-180=0
We add all the numbers together, and all the variables
-2x-x*x+150=0
Wy multiply elements
-1x^2-2x+150=0
a = -1; b = -2; c = +150;
Δ = b2-4ac
Δ = -22-4·(-1)·150
Δ = 604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{604}=\sqrt{4*151}=\sqrt{4}*\sqrt{151}=2\sqrt{151}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{151}}{2*-1}=\frac{2-2\sqrt{151}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{151}}{2*-1}=\frac{2+2\sqrt{151}}{-2} $

See similar equations:

| 12+3y=-6+y | | 2-2(4x-2)=-6 | | 4+3y=-6+y | | 5⋅10x=30 | | 5⋅10x= 30 | | 5⋅10x=  30 | | 5x+69=2x^2-14x-19 | | -2+-3x=3+x | | (4x+12)^2=27 | | x÷(-2/3)=3/10 | | 2x^-24x+25=0 | | 2x-24x+25=0 | | 0.40×60=x | | (x-1)(x-2)(x+3)(x+4)(x+5)=16 | | 4/3s-3=s2/3-1/3s | | 2a+5=9−2a | | 9^(3-5x)=81 | | 9^3-5x=81 | | -5+3x=4+7x | | 4x+6-6=7 | | (0.9x(0.1^(1/2))+(0.2x(0.1^(1/4)))= | | -5x-4(-3)=13 | | 17x+1=2x+45 | | 3(2m+6)-7=3-2(6m+2) | | 13/10x=130 | | y/2-y+4/3=5 | | (x+3)+(2x+1)+(3x-4)=360 | | 7x-17.65=3.35 | | 16x8x=64 | | Ax=54 | | 7x=8=6x-11 | | 0=xˆ2+6x-185 |

Equations solver categories