If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(19-2x)(x+2)-(2x+9)(x+4)-4x(x+1)=0
We add all the numbers together, and all the variables
(-2x+19)(x+2)-(2x+9)(x+4)-4x(x+1)=0
We multiply parentheses
-4x^2+(-2x+19)(x+2)-(2x+9)(x+4)-4x=0
We multiply parentheses ..
-4x^2+(-2x^2-4x+19x+38)-(2x+9)(x+4)-4x=0
We add all the numbers together, and all the variables
-4x^2+(-2x^2-4x+19x+38)-4x-(2x+9)(x+4)=0
We get rid of parentheses
-4x^2-2x^2-4x+19x-4x-(2x+9)(x+4)+38=0
We multiply parentheses ..
-4x^2-2x^2-(+2x^2+8x+9x+36)-4x+19x-4x+38=0
We add all the numbers together, and all the variables
-6x^2-(+2x^2+8x+9x+36)+11x+38=0
We get rid of parentheses
-6x^2-2x^2-8x-9x+11x-36+38=0
We add all the numbers together, and all the variables
-8x^2-6x+2=0
a = -8; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·(-8)·2
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-10}{2*-8}=\frac{-4}{-16} =1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+10}{2*-8}=\frac{16}{-16} =-1 $
| x/5=15/8 | | x-0.25x=322384 | | X(x+12)=100 | | 4m^2=`17m-15 | | 47=7(x+5) | | 5^(-7x)=9 | | X+4/2x+4=1/4 | | 6x+3/7x+1=2 | | 4×c=3 | | 7y+6=9+2y | | 6x-13=50/x | | 6q-4.8-5.7q=-0.1q-4.8 | | 3x+8/9x+4=3/8 | | 2t+2+2t-3t=6+3 | | (6.43+x)/3=3.5 | | 5(3x-3)+4(6-2x)-2(3x+2)=-1 | | 500m^2+125m=0 | | 200000=800-2x^2 | | 200000=800-x^2 | | x^2-400x+50000=0 | | 0.05=-1.5x | | 3a=9(3) | | 3a=9•3 | | .25x=22+.1x | | x^2-400x+100000=0 | | 3a=(6+3) | | (6+3)=3a | | x^2-400x+10000=0 | | x^2-440x+10000=0 | | 5x-6=8x-6 | | X/2=(x-5)/3 | | 5x-11=8x-25 |