(19/1334)x-(382/24)=0

Simple and best practice solution for (19/1334)x-(382/24)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (19/1334)x-(382/24)=0 equation:



(19/1334)x-(382/24)=0
Domain of the equation: 1334)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+19/1334)x-(+382/24)=0
We multiply parentheses
19x^2-(+382/24)=0
We get rid of parentheses
19x^2-382/24=0
We multiply all the terms by the denominator
19x^2*24-382=0
Wy multiply elements
456x^2-382=0
a = 456; b = 0; c = -382;
Δ = b2-4ac
Δ = 02-4·456·(-382)
Δ = 696768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{696768}=\sqrt{64*10887}=\sqrt{64}*\sqrt{10887}=8\sqrt{10887}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10887}}{2*456}=\frac{0-8\sqrt{10887}}{912} =-\frac{8\sqrt{10887}}{912} =-\frac{\sqrt{10887}}{114} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10887}}{2*456}=\frac{0+8\sqrt{10887}}{912} =\frac{8\sqrt{10887}}{912} =\frac{\sqrt{10887}}{114} $

See similar equations:

| (19/1334)x=(382/24) | | .16x=258 | | (19/1334)x+(382/24)=0 | | 12x-3=x+6 | | 23=-9+4v | | .75x+5=0.5x-3 | | -0.75x=0.25-0.5x | | -2(5+x-1=3x+3) | | n=26-10 | | (120+x)/7=22 | | 20x-8x=40 | | 3x+6=4x-14-x | | .8x+17.92=273.92 | | 12x-3(4x-5)=15 | | 6(x+2)=9x+48 | | 2x+26=26 | | 1=-4(-6d+5/13)+5 | | 17a+18=-8a-7 | | 17a+18=-a-7 | | (5x-32)=(34x-4) | | -13k-4=-3k+66 | | 2x-25=86 | | -2h+6=-14h+78 | | 125x=1 | | 5x5x5x=1 | | 2(7x+5)=-2(-7x-5) | | -3y+12=12y-18 | | (3.2)4(5x+9)=38 | | (x-50)3x=150 | | 5(x+100)-10x+3(4x+11)=596 | | m-18=-19 | | 7a-3=1 |

Equations solver categories