If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(19/1334)x-(383/24)=3675
We move all terms to the left:
(19/1334)x-(383/24)-(3675)=0
Domain of the equation: 1334)x!=0determiningTheFunctionDomain (19/1334)x-3675-(383/24)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+19/1334)x-3675-(+383/24)=0
We multiply parentheses
19x^2-3675-(+383/24)=0
We get rid of parentheses
19x^2-3675-383/24=0
We multiply all the terms by the denominator
19x^2*24-383-3675*24=0
We add all the numbers together, and all the variables
19x^2*24-88583=0
Wy multiply elements
456x^2-88583=0
a = 456; b = 0; c = -88583;
Δ = b2-4ac
Δ = 02-4·456·(-88583)
Δ = 161575392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{161575392}=\sqrt{16*10098462}=\sqrt{16}*\sqrt{10098462}=4\sqrt{10098462}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10098462}}{2*456}=\frac{0-4\sqrt{10098462}}{912} =-\frac{4\sqrt{10098462}}{912} =-\frac{\sqrt{10098462}}{228} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10098462}}{2*456}=\frac{0+4\sqrt{10098462}}{912} =\frac{4\sqrt{10098462}}{912} =\frac{\sqrt{10098462}}{228} $
| 1/2=4x=-x=2 | | 1x(-2)=3(2x+4) | | 28=8s | | 16=2v+4 | | -12=-33+7a | | (19/1334)x-(383/24)=0 | | 31x24=744 | | 2x+18+x+6=90 | | (19/1334)x-(382/24)=0 | | (19/1334)x=(382/24) | | .16x=258 | | (19/1334)x+(382/24)=0 | | 12x-3=x+6 | | 23=-9+4v | | .75x+5=0.5x-3 | | -0.75x=0.25-0.5x | | -2(5+x-1=3x+3) | | n=26-10 | | (120+x)/7=22 | | 20x-8x=40 | | 3x+6=4x-14-x | | .8x+17.92=273.92 | | 12x-3(4x-5)=15 | | 6(x+2)=9x+48 | | 2x+26=26 | | 1=-4(-6d+5/13)+5 | | 17a+18=-8a-7 | | 17a+18=-a-7 | | (5x-32)=(34x-4) | | -13k-4=-3k+66 | | 2x-25=86 | | -2h+6=-14h+78 |