(190x+3)(220x-220)=2925

Simple and best practice solution for (190x+3)(220x-220)=2925 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (190x+3)(220x-220)=2925 equation:



(190x+3)(220x-220)=2925
We move all terms to the left:
(190x+3)(220x-220)-(2925)=0
We multiply parentheses ..
(+41800x^2-41800x+660x-660)-2925=0
We get rid of parentheses
41800x^2-41800x+660x-660-2925=0
We add all the numbers together, and all the variables
41800x^2-41140x-3585=0
a = 41800; b = -41140; c = -3585;
Δ = b2-4ac
Δ = -411402-4·41800·(-3585)
Δ = 2291911600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2291911600}=\sqrt{400*5729779}=\sqrt{400}*\sqrt{5729779}=20\sqrt{5729779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41140)-20\sqrt{5729779}}{2*41800}=\frac{41140-20\sqrt{5729779}}{83600} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41140)+20\sqrt{5729779}}{2*41800}=\frac{41140+20\sqrt{5729779}}{83600} $

See similar equations:

| 5v^2−27v+4=−6 | | 2m^2+16m-20=0 | | |6x9|=14 | | 8p+p+20p=p | | 1/3x²+12x-36=0 | | 250=1000/q | | 1v^2+2v+9=0 | | 8g-5g=g | | 5p-3/2=6 | | 9x-6=3{3x-2} | | 3q−10=20 | | 10/p=1 | | x+9=3(-x+3) | | 6y=+2−y | | (5x-25)+(2x+35)=180 | | 23*x^2=5 | | 2/3(x-4)=10 | | 4g=12.96 | | 3x(0x)=0 | | 4/3-x=1/3 | | 32-12x=0 | | 14x+3+200x-20=90 | | 2+3(4x-7)=5 | | 6/42=x28 | | 3x=5x10x-5 | | 2(5-2w)=-2/3(12w-3)-4 | | 5x=21+2x=3(x+1)=24 | | 1.25x+0.75x+x=9000 | | x/10+8=-3 | | -7.6=-1.2+x/0.5 | | 2x3^X-2=162 | | -8y+1=-9y |

Equations solver categories