(19x-18)(7x+1)=(10x-9)

Simple and best practice solution for (19x-18)(7x+1)=(10x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (19x-18)(7x+1)=(10x-9) equation:



(19x-18)(7x+1)=(10x-9)
We move all terms to the left:
(19x-18)(7x+1)-((10x-9))=0
We multiply parentheses ..
(+133x^2+19x-126x-18)-((10x-9))=0
We calculate terms in parentheses: -((10x-9)), so:
(10x-9)
We get rid of parentheses
10x-9
Back to the equation:
-(10x-9)
We get rid of parentheses
133x^2+19x-126x-10x-18+9=0
We add all the numbers together, and all the variables
133x^2-117x-9=0
a = 133; b = -117; c = -9;
Δ = b2-4ac
Δ = -1172-4·133·(-9)
Δ = 18477
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18477}=\sqrt{9*2053}=\sqrt{9}*\sqrt{2053}=3\sqrt{2053}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-117)-3\sqrt{2053}}{2*133}=\frac{117-3\sqrt{2053}}{266} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-117)+3\sqrt{2053}}{2*133}=\frac{117+3\sqrt{2053}}{266} $

See similar equations:

| 11x+4=2x+31 | | 3x+3+2x+1+9+12+15=180 | | 3x+3+2x+1+9+12+15=90 | | -8(1-n)=8(n-7) | | P=x/5 | | 3x+3+2x+1=180 | | 3x+3+2x+1=15 | | -30=n(3n+21) | | 3x+3+2x+1=12 | | 3x+3+2x+1=9 | | F(c)=-2.5 | | 3y+6=-2y-9 | | -5(2m-4)=-5(1+7m) | | 29=0.5n(n+1) | | 2x+1+3x+3=90 | | 15x+4=10x-31 | | 3x-(x+7)=4 | | 6=-4/5f | | -7x+37=x-3(7x+5) | | -3(4-4n)=-8(2-2n) | | 7x2+4x+10=0 | | 2(x+5)=+8 | | 4(1-4x)+2x=24+6x | | (x)+(x+4)+(2(x+4)+2)=180 | | 2^x-3=5^2x-4 | | 7x-15=12x+16 | | 3x-x-7=4 | | -2(4x—1)-3x+5=-26 | | k-79=36 | | 8-8(3-n)=8(n-2) | | 8+x/8=x=3/8 | | -6x-12=-10 |

Equations solver categories