(1x+8)(3x+4)=2

Simple and best practice solution for (1x+8)(3x+4)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1x+8)(3x+4)=2 equation:


Simplifying
(1x + 8)(3x + 4) = 2

Reorder the terms:
(8 + 1x)(3x + 4) = 2

Reorder the terms:
(8 + 1x)(4 + 3x) = 2

Multiply (8 + 1x) * (4 + 3x)
(8(4 + 3x) + 1x * (4 + 3x)) = 2
((4 * 8 + 3x * 8) + 1x * (4 + 3x)) = 2
((32 + 24x) + 1x * (4 + 3x)) = 2
(32 + 24x + (4 * 1x + 3x * 1x)) = 2
(32 + 24x + (4x + 3x2)) = 2

Combine like terms: 24x + 4x = 28x
(32 + 28x + 3x2) = 2

Solving
32 + 28x + 3x2 = 2

Solving for variable 'x'.

Reorder the terms:
32 + -2 + 28x + 3x2 = 2 + -2

Combine like terms: 32 + -2 = 30
30 + 28x + 3x2 = 2 + -2

Combine like terms: 2 + -2 = 0
30 + 28x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
10 + 9.333333333x + x2 = 0

Move the constant term to the right:

Add '-10' to each side of the equation.
10 + 9.333333333x + -10 + x2 = 0 + -10

Reorder the terms:
10 + -10 + 9.333333333x + x2 = 0 + -10

Combine like terms: 10 + -10 = 0
0 + 9.333333333x + x2 = 0 + -10
9.333333333x + x2 = 0 + -10

Combine like terms: 0 + -10 = -10
9.333333333x + x2 = -10

The x term is 9.333333333x.  Take half its coefficient (4.666666667).
Square it (21.77777778) and add it to both sides.

Add '21.77777778' to each side of the equation.
9.333333333x + 21.77777778 + x2 = -10 + 21.77777778

Reorder the terms:
21.77777778 + 9.333333333x + x2 = -10 + 21.77777778

Combine like terms: -10 + 21.77777778 = 11.77777778
21.77777778 + 9.333333333x + x2 = 11.77777778

Factor a perfect square on the left side:
(x + 4.666666667)(x + 4.666666667) = 11.77777778

Calculate the square root of the right side: 3.431876714

Break this problem into two subproblems by setting 
(x + 4.666666667) equal to 3.431876714 and -3.431876714.

Subproblem 1

x + 4.666666667 = 3.431876714 Simplifying x + 4.666666667 = 3.431876714 Reorder the terms: 4.666666667 + x = 3.431876714 Solving 4.666666667 + x = 3.431876714 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.666666667' to each side of the equation. 4.666666667 + -4.666666667 + x = 3.431876714 + -4.666666667 Combine like terms: 4.666666667 + -4.666666667 = 0.000000000 0.000000000 + x = 3.431876714 + -4.666666667 x = 3.431876714 + -4.666666667 Combine like terms: 3.431876714 + -4.666666667 = -1.234789953 x = -1.234789953 Simplifying x = -1.234789953

Subproblem 2

x + 4.666666667 = -3.431876714 Simplifying x + 4.666666667 = -3.431876714 Reorder the terms: 4.666666667 + x = -3.431876714 Solving 4.666666667 + x = -3.431876714 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.666666667' to each side of the equation. 4.666666667 + -4.666666667 + x = -3.431876714 + -4.666666667 Combine like terms: 4.666666667 + -4.666666667 = 0.000000000 0.000000000 + x = -3.431876714 + -4.666666667 x = -3.431876714 + -4.666666667 Combine like terms: -3.431876714 + -4.666666667 = -8.098543381 x = -8.098543381 Simplifying x = -8.098543381

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-1.234789953, -8.098543381}

See similar equations:

| 12(2x-1)=3(8x+2) | | 9(2+1)=5(1-x) | | 11-y=14 | | 9147-391=9999-n | | 12(t-3)+6t=6(3t+2)-9 | | 8s+-32+-10s=-5 | | 45=12+7+5+12+Z+(Z+5) | | -4(1+x)=-3(5+2) | | 2-4x=-4-5x | | 8s+-32s+-10s=-5 | | .5x+x=60 | | x+yi=5 | | 2b+6b=7b-2 | | 7t+4=2(7+-5) | | 8-2x+5x=5 | | 4x^3+11x-3=0 | | 150-66=4q+3q^2 | | -14x+(-17x)= | | 1345+55=10+n | | .75x+7=19 | | N+(n+2)+(n+4)=243 | | -(5x-4)=144 | | 3(x-2)+7=8x | | 3x-7(x+5)=4-(x+6) | | 39-12=37-n | | 32p-40=21p+48 | | 8+(3+4)=(3+4)+8 | | (K+1)x^2-8kx+3k+5=0 | | 72-13=n-17 | | 44-11=n-15 | | 3x+2y-2z=3 | | 9x-5(x-6)=2(x-1)+4 |

Equations solver categories