(2)/(3)x+16=(5)/(4)x-5

Simple and best practice solution for (2)/(3)x+16=(5)/(4)x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2)/(3)x+16=(5)/(4)x-5 equation:



(2)/(3)x+16=(5)/(4)x-5
We move all terms to the left:
(2)/(3)x+16-((5)/(4)x-5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x-5)!=0
x∈R
We get rid of parentheses
2/3x-5/4x+5+16=0
We calculate fractions
8x/12x^2+(-15x)/12x^2+5+16=0
We add all the numbers together, and all the variables
8x/12x^2+(-15x)/12x^2+21=0
We multiply all the terms by the denominator
8x+(-15x)+21*12x^2=0
Wy multiply elements
252x^2+8x+(-15x)=0
We get rid of parentheses
252x^2+8x-15x=0
We add all the numbers together, and all the variables
252x^2-7x=0
a = 252; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·252·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*252}=\frac{0}{504} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*252}=\frac{14}{504} =1/36 $

See similar equations:

| 7^8x=93.2 | | -6(z-2)+4(3-6z)=-36 | | (x^2)+5x=-4 | | -28y+-2=10 | | -4(2m-1)=3(m+5) | | n-14=2(n-5) | | 5(m-1)=-4m-5 | | 3y+15=-12+6y | | 3x^2-5x-18=24 | | 3y+15=-112+6y | | 28-11x=-8 | | 15^6x=4^-x-3 | | (2+I)(3-I)(2-3i)=0 | | 7(1.72)^x=-2x+87 | | 24-(x-1)+3x=14 | | 39=x7 | | 8/3*z=1/8 | | x-34=8(2x+3)-13 | | 10=3/5x | | 2/3*z=8/3 | | 7x-26=10 | | -12.36=-x/9.9 | | 2-3d=4d+16 | | 4^4x*4^16x=16 | | 50x=450 | | -22-b=6+6(-3b+1) | | 2y+1=4y-23 | | 2m=4=16 | | 5000=3^2x | | 6(x-2)=5(-x+13) | | 1/2*z=2/3 | | 3/7*z=1/2 |

Equations solver categories