(2)/(3)x-(1)/(5)x=(14)/(15)

Simple and best practice solution for (2)/(3)x-(1)/(5)x=(14)/(15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2)/(3)x-(1)/(5)x=(14)/(15) equation:



(2)/(3)x-(1)/(5)x=(14)/(15)
We move all terms to the left:
(2)/(3)x-(1)/(5)x-((14)/(15))=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-1/5x-(+14/15)=0
We get rid of parentheses
2/3x-1/5x-14/15=0
We calculate fractions
(-1050x^2)/225x^2+150x/225x^2+(-45x)/225x^2=0
We multiply all the terms by the denominator
(-1050x^2)+150x+(-45x)=0
We get rid of parentheses
-1050x^2+150x-45x=0
We add all the numbers together, and all the variables
-1050x^2+105x=0
a = -1050; b = 105; c = 0;
Δ = b2-4ac
Δ = 1052-4·(-1050)·0
Δ = 11025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{11025}=105$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-105}{2*-1050}=\frac{-210}{-2100} =1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+105}{2*-1050}=\frac{0}{-2100} =0 $

See similar equations:

| -6=0.8x-15 | | 1y+13=6 | | -5+(p+3)=-5p-15 | | 3x+1.5=(x+0.5)+(3x-2) | | 3x-6=(2x+5) | | 7x-20+5=0 | | a+49=21 | | 11s+1=12 | | 4-2x=-3x-2 | | 4x-x+9=3(2x-1) | | 8n-(3n+7n)=3 | | -3/2x+1/5=7/2 | | 5x+17+8x-31=5x+17+8x-31 | | 2÷3x-1=x+7 | | 8+10v=-1+10v | | 10+r=22-2r | | -7-3x/2=19 | | 2x+10+5x+15=80 | | 3(x+4)-6=7x+1 | | 9p-4=7 | | 2(x+4)+7=31 | | 12/5x+11=35 | | 16=-2x+20 | | -1/3(9x+41)-5x=-70 | | t=-6*3+7 | | 5=-1/4z-3 | | -2(2x-4)=11 | | 4w=10w-6w | |  -3.9t2 +15.6t =0  | | 5×8^3n-1=80 | | 1/2(3a-8)+4=10 | | 1.25(4x+10)=17.5 |

Equations solver categories