(2)/(3y)-5=(1)/(6y)-4

Simple and best practice solution for (2)/(3y)-5=(1)/(6y)-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2)/(3y)-5=(1)/(6y)-4 equation:



(2)/(3y)-5=(1)/(6y)-4
We move all terms to the left:
(2)/(3y)-5-((1)/(6y)-4)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 6y-4)!=0
y∈R
We get rid of parentheses
2/3y-1/6y+4-5=0
We calculate fractions
12y/18y^2+(-3y)/18y^2+4-5=0
We add all the numbers together, and all the variables
12y/18y^2+(-3y)/18y^2-1=0
We multiply all the terms by the denominator
12y+(-3y)-1*18y^2=0
Wy multiply elements
-18y^2+12y+(-3y)=0
We get rid of parentheses
-18y^2+12y-3y=0
We add all the numbers together, and all the variables
-18y^2+9y=0
a = -18; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-18)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-18}=\frac{-18}{-36} =1/2 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-18}=\frac{0}{-36} =0 $

See similar equations:

| 0.5(2x+6)=0.2(4x-10) | | -3(4t-3)+7t=3t-8 | | 10/15(2x-1)+3/5(x+1)=3 | | 16b=304 | | -2+w/5=-7 | | N-+8n=-6 | | (2i)(3i)=-6 | | r+10=24 | | 25x^2-15x+8=0 | | 12(c+9)=12c | | 12(c+9)=9+c | | 5.75=9+x | | 12(c+9)=+108 | | s=6s-90 | | ×=0.8x+72 | | Y=2x^2-28x+80 | | (X-5)/3+(x+2)/3=35 | | 240=80+(x-5)+x | | 1.2x+4.3=-1x+2.1 | | X-5/3+x+2/3=35 | | 6=0.25(9+x) | | 4+-2m=2 | | 168^2+x^2=360^2 | | 2^-125x=(0.5)^(x-5) | | 240=91+(x-5)+x | | -111=3(7x-20 | | 3.25k=k(1/4+3) | | n=(9−4) | | 2x+(8x)=110 | | 5x(2x+10)=50 | | X-5=3x+7-x | | P=28-2q |

Equations solver categories