(2)/(5)x+4=(7)/(10)x-8

Simple and best practice solution for (2)/(5)x+4=(7)/(10)x-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2)/(5)x+4=(7)/(10)x-8 equation:



(2)/(5)x+4=(7)/(10)x-8
We move all terms to the left:
(2)/(5)x+4-((7)/(10)x-8)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x-8)!=0
x∈R
We get rid of parentheses
2/5x-7/10x+8+4=0
We calculate fractions
20x/50x^2+(-35x)/50x^2+8+4=0
We add all the numbers together, and all the variables
20x/50x^2+(-35x)/50x^2+12=0
We multiply all the terms by the denominator
20x+(-35x)+12*50x^2=0
Wy multiply elements
600x^2+20x+(-35x)=0
We get rid of parentheses
600x^2+20x-35x=0
We add all the numbers together, and all the variables
600x^2-15x=0
a = 600; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·600·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*600}=\frac{0}{1200} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*600}=\frac{30}{1200} =1/40 $

See similar equations:

| 2/3y+1/6=-3/4y+1 | | 3x+1+4x+4=90 | | 2/5+4=7/10x-8 | | 24x-12=24 | | -2n+4=-3n+9 | | 2(x-1)^-4=52 | | 5=3-0.5x | | 2(n+3)-n=-n-4(n+2) | | 9(x+3)+x=3(x-7)-8 | | 3^x+2-3^x-2=80 | | 7.4x-2.3=19.9 | | 5^-x+1+5^1+x=26 | | 579.10=500(1+0.29)(1+x)(1+0.03) | | 11x+9x=-4 | | 6(2+y)=3(3-1y) | | 180(n-2)=126n | | -2(t-5)-(t+9)=4 | | 6h+13-5=0 | | 6h2+13h-5=0 | | 4(7+y)=2(7-y)+2 | | 3m-9=5+3m | | 2x×x=512 | | 3(4m+3)-2=12m+7 | | 3x-2=-2x+12 | | 9^2+1=81^x-2/3x | | 5q+11q+2=0 | | 10.1+v÷6=-9.1 | | 2m+1=5m-8 | | 7x-21=5x+87 | | 9+2(x-6)=11-7(x-1) | | (7x+14)(-x-3)=0 | | 6x^2+21x-45=3 |

Equations solver categories