If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2*3)+(x*x)=6x^2
We move all terms to the left:
(2*3)+(x*x)-(6x^2)=0
determiningTheFunctionDomain -6x^2+(x*x)+(2*3)=0
We add all the numbers together, and all the variables
-6x^2+(+x*x)+6=0
We get rid of parentheses
-6x^2+x*x+6=0
Wy multiply elements
-6x^2+x^2+6=0
We add all the numbers together, and all the variables
-5x^2+6=0
a = -5; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-5)·6
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*-5}=\frac{0-2\sqrt{30}}{-10} =-\frac{2\sqrt{30}}{-10} =-\frac{\sqrt{30}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*-5}=\frac{0+2\sqrt{30}}{-10} =\frac{2\sqrt{30}}{-10} =\frac{\sqrt{30}}{-5} $
| 12s-22=50 | | 4x-2x^2=20 | | 17z-24z+15z=0 | | 4=-2x+11 | | (2a-4a+6)+a+4a+1)=22 | | (2x^2+11x-54)=0 | | (3a+2a-5)+(-a+4a+4)=7 | | (72x^2-118x+34)/(8x+2)=0 | | 0.5x+20=0.10x+5 | | n2+4n+7=0 | | 3^x-1=3^10 | | 27=k*81 | | 27=k(9*9) | | x^2-22x+126=0 | | 15x-15x=15x | | (x+38)+124+97+69=360 | | (3-5x)+140+110+62=360 | | -9.986x^2+-3.243x+5.079=0 | | 2624-96r=32r | | x(x+2)=17.5 | | (15+4x)+131+97+57=360 | | (2x+6)/2=x+3 | | 9x^2-14x-20=0 | | 25+5x+11=40 | | 7x^=-x | | 65x=325 | | -4(x+8)-41=3-40 | | 1.8=(x^2-3) | | 1.8=x(x^2-3) | | -5-9=4x+3-3x | | 7(5x+8)=12-(1x+4) | | 2/5z=3/5z+7/20 |