(2*x)=(2+1)-8/(9*x)

Simple and best practice solution for (2*x)=(2+1)-8/(9*x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2*x)=(2+1)-8/(9*x) equation:



(2x)=(2+1)-8/(9x)
We move all terms to the left:
(2x)-((2+1)-8/(9x))=0
Domain of the equation: 9x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x-(3-8/9x)=0
We get rid of parentheses
2x+8/9x-3=0
We multiply all the terms by the denominator
2x*9x-3*9x+8=0
Wy multiply elements
18x^2-27x+8=0
a = 18; b = -27; c = +8;
Δ = b2-4ac
Δ = -272-4·18·8
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{17}}{2*18}=\frac{27-3\sqrt{17}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{17}}{2*18}=\frac{27+3\sqrt{17}}{36} $

See similar equations:

| 3(b+b+b+5)=32 | | 7x+7=2x+-8 | | -24=6(v+8)+6v | | 3y-5+2(3y+1)=-3(y+3) | | 3(b+b+b)=27 | | Y=10^x | | 234-2=(3/2)(78-x) | | 31/3x2/5=G | | 2x+.6x+2.5x=x+x+2x-2+2x-2 | | 2x+.6+2.5x=x+x+2x-2+2x-2 | | (x+)(x-)=x^2-16 | | 0-8a-8=a2a | | 1+2*3-4+(9*x)=82 | | 2x^2+6=16 | | 3(y-8)-4=-5(-5y+6)-4y | | 3-2(6-(7y-3))=12 | | 5x+4/6+4/3=-2x/7 | | 45w=5.1w-30 | | -7(2x-6)+9x=5(x+8) | | 12x=16+-30x | | 2x+.06x+2.5x=x+x+2x-2+2x-2 | | 14x-179=4x-9 | | 4x^2-16x-96=0 | | 3(x)+10=37 | | 3(x)+10=7 | | -7(u+3)=5u+3 | | 65=20+15t | | -8(3x-5)=112 | | 3(x+6)+7=32 | | -1+a-4+7a=6a+7a | | -159=3(8r-4)-3 | | -6v-6=8(v+8) |

Equations solver categories