If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2-u)(5u-6)=0
We add all the numbers together, and all the variables
(-1u+2)(5u-6)=0
We multiply parentheses ..
(-5u^2+6u+10u-12)=0
We get rid of parentheses
-5u^2+6u+10u-12=0
We add all the numbers together, and all the variables
-5u^2+16u-12=0
a = -5; b = 16; c = -12;
Δ = b2-4ac
Δ = 162-4·(-5)·(-12)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4}{2*-5}=\frac{-20}{-10} =+2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4}{2*-5}=\frac{-12}{-10} =1+1/5 $
| y^2-3=18 | | 1025=a/1-0.92 | | 7n+6+9n=-26 | | 5w-22=-2(w-3) | | 125/x-25=100 | | 9x+7=13x-17 | | 3(5x+2)-5(6x-1)=2(x-8)-6(7x-4) | | 1/2+-6/7=x=1/2 | | 0=45-10t-5t^ | | m^2-m-3/4=0 | | 45=45-10t-5t^ | | 2x*0.5x=0.083 | | 4z+25=6z-18-12-9z | | (1+x)^35=200 | | (m-2)-5=9-2(m-4) | | 7y-9=10 | | 6x+3+59x+1=0 | | 6x+3+59x=-1 | | 0=2x^2+16x-96 | | 5z-5-14-4z=3z-1 | | v÷7+13=20 | | 126=(x+3)(2x+10) | | x+5.7=6.7 | | 2/2/5+r=5/2/5 | | 3^x-1+1=34 | | 36x=32x–1 | | 9.7e-4=X | | 3^0.2x=433 | | 17(2-x)-5(x+1)=8(1-7x) | | a+2=5a-7 | | 3/7y-4/5=1/2 | | F(x)=8-4(x) |