(2-x)2+(3x+1)(3x-1)-4=5x2

Simple and best practice solution for (2-x)2+(3x+1)(3x-1)-4=5x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2-x)2+(3x+1)(3x-1)-4=5x2 equation:



(2-x)2+(3x+1)(3x-1)-4=5x^2
We move all terms to the left:
(2-x)2+(3x+1)(3x-1)-4-(5x^2)=0
determiningTheFunctionDomain -5x^2+(2-x)2+(3x+1)(3x-1)-4=0
We add all the numbers together, and all the variables
-5x^2+(-1x+2)2+(3x+1)(3x-1)-4=0
We use the square of the difference formula
-5x^2+9x^2+(-1x+2)2-1-4=0
We multiply parentheses
-5x^2+9x^2-2x+4-1-4=0
We add all the numbers together, and all the variables
4x^2-2x-1=0
a = 4; b = -2; c = -1;
Δ = b2-4ac
Δ = -22-4·4·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*4}=\frac{2-2\sqrt{5}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*4}=\frac{2+2\sqrt{5}}{8} $

See similar equations:

| 0,3x=78 | | 7g+6=-18+9g | | 14p-20=13p | | -14+3q=2q | | 3/5b+9=21 | | -3z=20+z | | 7x-2=1+3x | | -14b+18b=4 | | X–5=7–4x | | -13=(t/2)+-9 | | 17t=-20+13t | | 10m=-9m-19 | | 1/4=2.54/x= | | X+5=11;x= | | 2/x=2.54 | | Y-7=3y+7 | | 7x*13x=30 | | (7x)(13x)=30 | | 2x²-6x=13 | | 17x-18=-67 | | 4s-14=-2+3s | | 17x=-49 | | x-(x*0.08)=104140 | | 15-18m=-16+1-8m | | 2x(3x-12)=4x-21 | | -3j=-5j-8 | | 104,140=x-(x*0.08) | | 9t-3t-6=8t+10 | | 7b=-1+8b | | 5e25e-30=0 | | -9v+3=-7v-5 | | 4k^2+20k+17=0 |

Equations solver categories