(2-x2)-(3x2=4x)-(-1-2x)

Simple and best practice solution for (2-x2)-(3x2=4x)-(-1-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2-x2)-(3x2=4x)-(-1-2x) equation:



(2-x2)-(3x^2=4x)-(-1-2x)
We move all terms to the left:
(2-x2)-(3x^2-(4x)-(-1-2x))=0
We add all the numbers together, and all the variables
(-1x^2+2)-(3x^2-4x-(-2x-1))=0
We get rid of parentheses
-1x^2-(3x^2-4x-(-2x-1))+2=0
We calculate terms in parentheses: -(3x^2-4x-(-2x-1)), so:
3x^2-4x-(-2x-1)
We get rid of parentheses
3x^2-4x+2x+1
We add all the numbers together, and all the variables
3x^2-2x+1
Back to the equation:
-(3x^2-2x+1)
We get rid of parentheses
-1x^2-3x^2+2x-1+2=0
We add all the numbers together, and all the variables
-4x^2+2x+1=0
a = -4; b = 2; c = +1;
Δ = b2-4ac
Δ = 22-4·(-4)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5}}{2*-4}=\frac{-2-2\sqrt{5}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5}}{2*-4}=\frac{-2+2\sqrt{5}}{-8} $

See similar equations:

| x-3(x+11)=3 | | 11+1=-4(4x-3) | | 3(x+6)=3(x-2)+3 | | 110-30x=80+60x | | 5x+10=62x | | -2d-10d=60 | | 2x+3(x-1)=x+9 | | -2(3q-2)=1/3(7-3q) | | 20x+2=5(x+1) | | 3(x+6)=3(x-2)+4 | | (6x-5)+(2x+13)=3x+13 | | -21=-8k-6+5k | | 17=-s | | 15+1/7r=20 | | X+4=7x+1 | | 78=3w+15 | | 8b+16=3b+44 | | 9(w+4)=-6w-39 | | 15m=585 | | 8.8x+30=6.3x | | 0.2m=123 | | 3(x+6)=3(x-2)+9 | | 123=1/2x+35 | | -10q+6=-9q | | x-1+x+3x-7=9 | | 5(2x-3)=5x+5 | | 45=2p+3p | | 8-2x=3x+3x | | -17+25=-4(x+8) | | -44+22x=16+40 | | 2(5x-10)=3x+15 | | 3(x+6)=3(x-2)+5 |

Equations solver categories