(2/10)b=99

Simple and best practice solution for (2/10)b=99 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/10)b=99 equation:



(2/10)b=99
We move all terms to the left:
(2/10)b-(99)=0
Domain of the equation: 10)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+2/10)b-99=0
We multiply parentheses
2b^2-99=0
a = 2; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·2·(-99)
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{792}=\sqrt{36*22}=\sqrt{36}*\sqrt{22}=6\sqrt{22}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{22}}{2*2}=\frac{0-6\sqrt{22}}{4} =-\frac{6\sqrt{22}}{4} =-\frac{3\sqrt{22}}{2} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{22}}{2*2}=\frac{0+6\sqrt{22}}{4} =\frac{6\sqrt{22}}{4} =\frac{3\sqrt{22}}{2} $

See similar equations:

| 86+f=23 | | 6,5x–9=10,5 | | 4n^2-3=46 | | -8+s=25 | | 5^x+1=24 | | 13+4x−9=7x+7−3x. | | 24-3z=9z | | -15+r=38 | | 9d=–54 | | 9x^2-8=28 | | (7x-16)=(5x+8) | | 3(x-2=7.5 | | 3{2x}+1=25 | | 3(x-2)=-71/ | | 8x+42=-8x-42 | | 3(-2a-4)+3a3(−2a−4)+3a=27+15-12 | | 8-x/5=-2 | | 9(n+6)=72 | | 3(-2a-4)+3a3(−2a−4)+3a=27+15 | | 8/3x+35=5/6x+46 | | -x*39=3x+19 | | -18.87+17.5u+11.15=16.1u-8.14 | | h+7=14 | | 3+5k=8 | | -6t+6t-17=18+7t | | (((x*700)/60)/9450)*100=4 | | c-2=22 | | x+1/3x=84 | | -12=11x45 | | (((x*700)/60)/9450)*100=24.3 | | 5(x+3)=4x-9 | | 7x-6=5x-28 |

Equations solver categories