If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)(3x+18)=5x-9
We move all terms to the left:
(2/3)(3x+18)-(5x-9)=0
Domain of the equation: 3)(3x+18)!=0We add all the numbers together, and all the variables
x∈R
(+2/3)(3x+18)-(5x-9)=0
We get rid of parentheses
(+2/3)(3x+18)-5x+9=0
We multiply parentheses ..
(+6x^2+2/3*18)-5x+9=0
We multiply all the terms by the denominator
(+6x^2+2-5x*3*18)+9*3*18)=0
We add all the numbers together, and all the variables
(+6x^2+2-5x*3*18)=0
We get rid of parentheses
6x^2-5x*3*18+2=0
Wy multiply elements
6x^2-270x*1+2=0
Wy multiply elements
6x^2-270x+2=0
a = 6; b = -270; c = +2;
Δ = b2-4ac
Δ = -2702-4·6·2
Δ = 72852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72852}=\sqrt{4*18213}=\sqrt{4}*\sqrt{18213}=2\sqrt{18213}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-270)-2\sqrt{18213}}{2*6}=\frac{270-2\sqrt{18213}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-270)+2\sqrt{18213}}{2*6}=\frac{270+2\sqrt{18213}}{12} $
| 12y+y–7y–5y+y=20 | | 1/5(2x-5)=3x+7 | | 17u-18u=-2u | | ^2+2x-8=0 | | −5g+2.3=−18.8−5g+2.3=−18.8 | | 8s(5s+6)=1/2(20+6s) | | 5(4+2x)-8x-12)=68 | | 9^x-2=4^x | | 12-3b;=2 | | 625h+4225=26100 | | 2(w^2-21w+54)=0 | | (1/4)x+12=(-1/4)x | | 5(r-3)=10(r/2-2) | | 5(x+1)=5x+12 | | −6t−7=17−6t−7=17 | | 5(10x+6)=-4 | | 5(x-9=2x+15 | | 3x+2=1x+4 | | x^2+3x+11=21 | | 13x-9=19-16+6 | | -7=a=11 | | x2=2025 | | 13=6a–5a | | 2x+5=1x+9 | | x/6=2=8 | | 9k-15+5=9k-10 | | 225=-5(x+5) | | 11x-7x=44 | | 3(t+5)=-18 | | 1.5c*7.5c=1.7 | | -104-5x=2x+57 | | 11x+16=20x-65 |