If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)(9x+1)+16=18
We move all terms to the left:
(2/3)(9x+1)+16-(18)=0
Domain of the equation: 3)(9x+1)!=0We add all the numbers together, and all the variables
x∈R
(+2/3)(9x+1)+16-18=0
We add all the numbers together, and all the variables
(+2/3)(9x+1)-2=0
We multiply parentheses ..
(+18x^2+2/3*1)-2=0
We multiply all the terms by the denominator
(+18x^2+2-2*3*1)=0
We get rid of parentheses
18x^2+2-2*3*1=0
We add all the numbers together, and all the variables
18x^2-4=0
a = 18; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·18·(-4)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*18}=\frac{0-12\sqrt{2}}{36} =-\frac{12\sqrt{2}}{36} =-\frac{\sqrt{2}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*18}=\frac{0+12\sqrt{2}}{36} =\frac{12\sqrt{2}}{36} =\frac{\sqrt{2}}{3} $
| -1/4(40-8x)=19x+2-5x | | 1/2(2x+4)=2/3+6 | | 25x+70=25x+34 | | 8(3-4x)=248 | | 88=-2-m | | |5x|+8=23 | | 5x-7x+28=3x+33 | | 2p–4=-4p+14 | | 2a-9+5a+14=360 | | 2x+(x+7)=50 | | 2(t+5)=24 | | -x/2=45 | | (7+w)-(w+7)/w=-4 | | 6x+14x-6=5(4x+2) | | 10x-6=7x+60 | | 7-3x+2=39 | | (3x-5)+2X+84=180 | | a^2-60=21 | | |2x-6|+1=19 | | 72/2x=14 | | X+x+10+90=180 | | X-4.3=0.55+4.3+4.3=x= | | 5+8x-3=34 | | 4x-1=9x-22=9 | | 51+3/4k=78 | | y/3+10=32 | | r-1=0 | | 6x-4+4x+2=38 | | (8h-1)-(h+3);h=3 | | 16=-6-2r | | 2(6x+8)=4+6x$$ | | 5t^2-7t-12=0 |