If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)(9x-6)=4x+10
We move all terms to the left:
(2/3)(9x-6)-(4x+10)=0
Domain of the equation: 3)(9x-6)!=0We add all the numbers together, and all the variables
x∈R
(+2/3)(9x-6)-(4x+10)=0
We get rid of parentheses
(+2/3)(9x-6)-4x-10=0
We multiply parentheses ..
(+18x^2+2/3*-6)-4x-10=0
We multiply all the terms by the denominator
(+18x^2+2-4x*3*-6)-10*3*-6)=0
We add all the numbers together, and all the variables
(+18x^2+2-4x*3*-6)=0
We get rid of parentheses
18x^2-4x*3*+2-6=0
We add all the numbers together, and all the variables
18x^2-4x*3*-4=0
Wy multiply elements
18x^2-12x^2-4=0
We add all the numbers together, and all the variables
6x^2-4=0
a = 6; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·6·(-4)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*6}=\frac{0-4\sqrt{6}}{12} =-\frac{4\sqrt{6}}{12} =-\frac{\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*6}=\frac{0+4\sqrt{6}}{12} =\frac{4\sqrt{6}}{12} =\frac{\sqrt{6}}{3} $
| -4x-20=60 | | y-8.39=2.4 | | 6x-8(-4-x)=-5x-6 | | -4x-20=-60 | | 3(x-2)=5x-36 | | 2n+43/5=9 | | x+(x+7)3x=97 | | 6x-8(-5-x)=-5x-6 | | 4x-20=-60 | | -(3n+1)=4-8n | | 10-2x=x+13 | | 10x+12+3x-2=36 | | 3(1-n)=-11-5n | | -48=-1/4y | | 6^x+10=16 | | 30=3*w | | w-2.78=9.13 | | a–2+3=-2 | | 11/12w=-7/15 | | -9+7a=8(2a-5)-5 | | 4x+6=6x-9 | | -6n–2n=16 | | 5=v+2 | | 2x=3x-5=20 | | 5k+k=3k-5 | | x/5+4=-20 | | 7n-6=2(6n-4) | | 3b^2+6=0 | | (2x-31)=-9x+24 | | 0.5(6x-8)=0.2(10-5x) | | 3(v+7)-8v=1 | | x+(x+6)4x=132 |