(2/3)(x+1)=10

Simple and best practice solution for (2/3)(x+1)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)(x+1)=10 equation:



(2/3)(x+1)=10
We move all terms to the left:
(2/3)(x+1)-(10)=0
Domain of the equation: 3)(x+1)!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)(x+1)-10=0
We multiply parentheses ..
(+2x^2+2/3*1)-10=0
We multiply all the terms by the denominator
(+2x^2+2-10*3*1)=0
We get rid of parentheses
2x^2+2-10*3*1=0
We add all the numbers together, and all the variables
2x^2-28=0
a = 2; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·2·(-28)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*2}=\frac{0-4\sqrt{14}}{4} =-\frac{4\sqrt{14}}{4} =-\sqrt{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*2}=\frac{0+4\sqrt{14}}{4} =\frac{4\sqrt{14}}{4} =\sqrt{14} $

See similar equations:

| 12=3n-n | | -5(1+p)=-17-7p | | 29+7=q+9 | | 3=-1/2x-12 | | -5(7x-1)=5+7x | | 4k-3-2k=-1 | | 4c+2=2 | | 8–2y=21–6y | | X+6=3+2x | | 17-5(2x-9)=6x–6 | | 7. 17-5(2x-9)=6x–6 | | -4x-340=14x+128 | | n/3-12=-8 | | 13y+8=-3+2y | | 3s-2=-11 | | 13-5k=1-2k | | 1+3m-5m=9 | | 7=y/8.75 | | 7x+6-x=16+8x | | t/4+-12=-9 | | (−1/2)x=6 | | 3+6r=5r+2r | | |4x+12|=10 | | -14x-340=14x+128 | | 4(x-6)+2x+8=32 | | 4(v-65)+8=96 | | x=180*3x | | X²+27x=0 | | 12x+6=894-588 | | 4+3b=-14 | | (x-2)180=150 | | 1=3x+40 |

Equations solver categories