If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)s-(5/6)s+0.5=-3/2
We move all terms to the left:
(2/3)s-(5/6)s+0.5-(-3/2)=0
Domain of the equation: 3)s!=0
s!=0/1
s!=0
s∈R
Domain of the equation: 6)s!=0We add all the numbers together, and all the variables
s!=0/1
s!=0
s∈R
(+2/3)s-(+5/6)s+0.5-(-3/2)=0
We multiply parentheses
2s^2-5s^2+0.5-(-3/2)=0
We get rid of parentheses
2s^2-5s^2+0.5+3/2=0
We multiply all the terms by the denominator
2s^2*2-5s^2*2+3+(0.5)*2=0
We add all the numbers together, and all the variables
2s^2*2-5s^2*2+4=0
Wy multiply elements
4s^2-10s^2+4=0
We add all the numbers together, and all the variables
-6s^2+4=0
a = -6; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-6)·4
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-6}=\frac{0-4\sqrt{6}}{-12} =-\frac{4\sqrt{6}}{-12} =-\frac{\sqrt{6}}{-3} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-6}=\frac{0+4\sqrt{6}}{-12} =\frac{4\sqrt{6}}{-12} =\frac{\sqrt{6}}{-3} $
| .(69.115)=69m-115 | | 2x2+2x2=8 | | (69.115)=69m-115 | | -x+32=64 | | 4m+0.375=8.375 | | 2x(x+10)=5x-18 | | c)8(a+12)=168 | | e/8=25/40 | | 1/3d+6=9 | | 2(c+9)=30 | | -64=8b | | 10-3a=37 | | 3x-5+7x2=3x2+7+11x | | 2x+3x+55=100 | | 4x(3x)=192 | | m/2*(m+6)=48 | | (0.7x0.7)+0.12=e | | u/4+12=20 | | (9x0.3)+u=3.5 | | 32x-28=12 | | 60+7x=180 | | 180-60=7x | | x4(x+6)-4(4-2x)=7x+6 | | -13-y=-196/15 | | 8n+10=26 | | 20m+40+20=740 | | y+65=70 | | 5y-150=550 | | 3z+19=6z+7 | | 15+3b=66 | | 2x+1=3(x+1) | | 4n+n=-3 |