If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)x+2=26/10
We move all terms to the left:
(2/3)x+2-(26/10)=0
Domain of the equation: 3)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+2/3)x+2-(+26/10)=0
We multiply parentheses
2x^2+2-(+26/10)=0
We get rid of parentheses
2x^2+2-26/10=0
We multiply all the terms by the denominator
2x^2*10-26+2*10=0
We add all the numbers together, and all the variables
2x^2*10-6=0
Wy multiply elements
20x^2-6=0
a = 20; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·20·(-6)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*20}=\frac{0-4\sqrt{30}}{40} =-\frac{4\sqrt{30}}{40} =-\frac{\sqrt{30}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*20}=\frac{0+4\sqrt{30}}{40} =\frac{4\sqrt{30}}{40} =\frac{\sqrt{30}}{10} $
| 14/9=c/9 | | 28=-9n+4n | | -28=5-3x=2-2x | | 18x-5=4x-33 | | 7×-3=5x+3 | | 2-3x=7x-5x+1 | | X+4x+8=98 | | 3n+7=35 | | -(x+5)-2x=-2x+17 | | 21+x=2.00x | | 6-2(x+3)=x+1 | | 13-2c-2=2c+4+3 | | 0.015=-0.04=-0.2-0.009p | | 32/3x=11/5 | | 2/1(24/20-6h/2)=1 | | 5n+7-7=52-7 | | 2=24-6a | | 1/3x-1/4x=1 | | -2(x+5)+3=-3x+7 | | 18+18x=14+20x | | a(1)=-2 | | 3(x-2)+21=3(x+5) | | 16r-12=4 | | -2(3-j)+5j=1 | | -2x/60=15 | | -2x+3(x-11)=x44 | | (5/11)x+2=1 | | -1=-2x÷-4 | | -18-3s=16 | | 14+14x=14+20x | | -(x+23)=-2x7 | | 6-2x=5x+4 |