(2/3)x+3/4=5

Simple and best practice solution for (2/3)x+3/4=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x+3/4=5 equation:



(2/3)x+3/4=5
We move all terms to the left:
(2/3)x+3/4-(5)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (2/3)x-5+3/4=0
We add all the numbers together, and all the variables
(+2/3)x-5+3/4=0
We multiply parentheses
2x^2-5+3/4=0
We multiply all the terms by the denominator
2x^2*4+3-5*4=0
We add all the numbers together, and all the variables
2x^2*4-17=0
Wy multiply elements
8x^2-17=0
a = 8; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·8·(-17)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{34}}{2*8}=\frac{0-4\sqrt{34}}{16} =-\frac{4\sqrt{34}}{16} =-\frac{\sqrt{34}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{34}}{2*8}=\frac{0+4\sqrt{34}}{16} =\frac{4\sqrt{34}}{16} =\frac{\sqrt{34}}{4} $

See similar equations:

| -132+5=-3-3v | | 4-(y-5)-y+3=2 | | -3+u/4=-7 | | -13m=35 | | 7-2(x+3)=9 | | 2/3x+3/4=5 | | 6x+(24/8)=9 | | f-2.17=21 | | 5+2(p+1)=15 | | 3x^2+14-2=0 | | 100x=100x | | -y^2+2y=-10 | | 3x+5-2x+6=10 | | 500(1+7x)=563 | | t+3.43=18 | | x−43=−42x+Q | | |w|+6=6 | | P−43=−42x+Q | | -4-(x+9)=12 | | 5(x-6)2=125 | | -2x+87=3x+42 | | 2(1/2q+1)=-3(2q-1)+10 | | 5+3x,x=4 | | 9x+59=4x+19 | | y2–4y–4=0 | | 0=-6x+2/2 | | Z2-5z-24=0 | | 48=17x-9x | | 10(s-3)=-126 | | H(d)=-4d^2+8d+4 | | 3p-1=9p-10 | | 497000=t+0.001t^2 |

Equations solver categories