(2/3)x-(1/4)x=5

Simple and best practice solution for (2/3)x-(1/4)x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x-(1/4)x=5 equation:



(2/3)x-(1/4)x=5
We move all terms to the left:
(2/3)x-(1/4)x-(5)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-(+1/4)x-5=0
We multiply parentheses
2x^2-x^2-5=0
We add all the numbers together, and all the variables
x^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $

See similar equations:

| 20/7=4m/9 | | -19-8q=-10q+15 | | 4x+8-3x=5x-3 | | -2f=-3f-6 | | 6=8x-10x+2 | | 6.2-18.4s=-18.8s | | 3(2x+6)=10x+7 | | -2w=3-w | | 4/5(2a+60)=20 | | 7-9k=-13-16-3k | | 128/x=8 | | -7-7n=10n+5 | | 7(x+2)-4x=2(x+5) | | -19h=-20-18h | | -20+19r=20+9r | | 14+12x=-16+9 | | -7−7n=-10n+5 | | 3n-8+4n=5 | | -7-7n=-10n-5 | | -7t=-8t-8 | | -7(z−3)=42 | | 4/7(x+1/3)=1/7(x-3/5) | | -10+7a=-122 | | -3x•5+8=18 | | 7u-8-8=-8u-1 | | 27=x/2-9 | | 7s=8+8s | | -7s=-6s+10 | | (3+x)•5+8=18 | | 9-3m=-6m | | 10+r=-10-3r | | -4c+8=-3c |

Equations solver categories