(2/3)x-(1/6)x=75

Simple and best practice solution for (2/3)x-(1/6)x=75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x-(1/6)x=75 equation:



(2/3)x-(1/6)x=75
We move all terms to the left:
(2/3)x-(1/6)x-(75)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-(+1/6)x-75=0
We multiply parentheses
2x^2-x^2-75=0
We add all the numbers together, and all the variables
x^2-75=0
a = 1; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·1·(-75)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1}=\frac{0-10\sqrt{3}}{2} =-\frac{10\sqrt{3}}{2} =-5\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1}=\frac{0+10\sqrt{3}}{2} =\frac{10\sqrt{3}}{2} =5\sqrt{3} $

See similar equations:

| 5(2n-7)-6n=-2n+1 | | 12-(x+5)=18 | | .25-10y=8.50 | | x+91=360 | | n2169=0 | | a27=0 | | m^2=9/121 | | m2=1219 | | 2p+3×=100 | | n×30=0 | | y–27=8+10 | | y/7+48=57 | | 3=169^4^x | | U-32=u-53 | | (3x-31)+(19x-5)=90 | | 13=169^4x | | 80=10(c-91) | | x–13=-5 | | 4y​ −9=−45 | | 7(y11)2=42 | | 5(2x+3)=20×= | | 6.9x+4.3=-4.7x+8 | | 3x+(4x-2)=61 | | 0.2x(x)=1 | | 4(k+4)2=20 | | 2(1-3x)+4x=6x-8(x-5) | | (3x)+(2-4x)=61 | | 20/90=6/x | | 5(4x+7)=6x | | 23+4v=38 | | 1/3z=-5/6+16z | | 6(2m-5)=6(5-3m) |

Equations solver categories