(2/3)x-1=27/8

Simple and best practice solution for (2/3)x-1=27/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x-1=27/8 equation:



(2/3)x-1=27/8
We move all terms to the left:
(2/3)x-1-(27/8)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-1-(+27/8)=0
We multiply parentheses
2x^2-1-(+27/8)=0
We get rid of parentheses
2x^2-1-27/8=0
We multiply all the terms by the denominator
2x^2*8-27-1*8=0
We add all the numbers together, and all the variables
2x^2*8-35=0
Wy multiply elements
16x^2-35=0
a = 16; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·16·(-35)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{35}}{2*16}=\frac{0-8\sqrt{35}}{32} =-\frac{8\sqrt{35}}{32} =-\frac{\sqrt{35}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{35}}{2*16}=\frac{0+8\sqrt{35}}{32} =\frac{8\sqrt{35}}{32} =\frac{\sqrt{35}}{4} $

See similar equations:

| 3x4+6=9 | | 4(32x+1)+17(3x)-7=0 | | 9k^2-12k+1=0 | | 3(y+2)=2(y+4 | | 2h+5=18 | | (x/5)=12 | | p^2-34p+24=0 | | 5x-3(2x-5)=2(4x-1)+5/2 | | 10(1+3x))=-20 | | G(x)=2x+3x+5 | | x+4/3=3½ | | x^2-4-1=0 | | x+4/3=3(1/3) | | 8x+5/2=3 | | 1700=1800-5v | | 2x+4/4-5x/8=2x+4/6 | | 7=(36+45y/3)-2y | | 17=2*5+b | | (x-2)^2=25/81 | | 17=10+b | | 8x+4=3(x-1)=7 | | 2y-6y=0 | | 4x^2+18x-13=0 | | 2x^+22x+60=0 | | (2x-2000)2=5000 | | 5x^2+0.2x-3.02=0 | | ((2x-2000)2-2000)2-2000=5000 | | 98x^-5x-110=0 | | x=15+(x-90) | | (x+1)²+(x-3)²=15 | | 3/10=n/50= | | 6x-2x+x=-3 |

Equations solver categories